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Abstract

We show that for any 2-factor U of K, , with n odd, there exists a
hamilton decomposition of K, , — E(U) with a 1-factor leave. Settling
this last open case now provides necessary and sufficient conditions for
a hamilton decomposition of any complete multipartite graph with the
edges of any 2-factor removed.

1 Introduction

In 1892, Walecki [7] published a result showing that K, has a hamilton decomposi-
tion if and only if n is odd. Laskar and Auerbach [4] extended this result in 1974,
a hamilton decomposition when m(p—1) is eveyr.l.;q and a hamilton decomposition with
a 1-factor leave (that is, a hamilton decomposition of K® — F for some 1-factor F
in K}f)) when m(p — 1) is odd.
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More recently, the problem of constructing a hamilton decompositon of various
graphs with a 2-factor removed has been attacked. The first result of this type was
produced in 1997 by Buchanan [2], who showed that for any 2-factor U of K,, with
n odd, there exists a hamilton decomposition of K, — E(U). Rodger and Leach in
2001 [6] solved the corresponding problem for K, , with n even. Rodger and Leach
[5] also produced a result showing that KW — E(U) has a hamilton decomposition,
where p > 3 and U is a 2-factor of K with each cycle having length at least
p + 1. Recently, Rodger [9] produced a result removing this restriction on the cycle
lengths. Rodger’s result is unique in this area in that is the only result that was
obtained without using the technique of vertex amalgamation. The new observation
Rodger made which allowed this advance was independently made by Bryant; Bryant
used the observation to decompose K, into any three given 2-factors and (n — 7)/2
hamilton cycles [1]. Unlike the results in [5] and [6], Rodger’s result in [9] also settles
the cases in which the decomposition has a 1-factor leave. His result applies to all
values of p except p = 2, so the only problem remaining open in this category is
proving the existence of a hamilton decomposition of K, , — E(U) with a 1-factor
leave for n odd. We settle this problem here using two different methods. The first
involves amalgamation and a recent result of Hilton and Johnson [3]; the second
approach, which uses direct difference methods, is based on the new observation
referred to above, and is a good deal simpler than the first.

In this paper, factorizations of graphs are represented as edge-colorings, G(7)
denotes the subgraph of G induced by the edges colored i, k; denotes the regularity of
G(i), and k; denotes the edge-connectivity of G(i). If the graph G is an amalgamation
of H, then H is said to be a disentanglement of G.

2 Outline Factorizations

The main result of this paper relies on the following corollary of a result of Hilton
and Johnson [3]:

Corollary 2.1 Let ¢ > 1, let G be an {-edge-colored bipartite graph, with vertex
bipartition {L, R}, letn : V(G) = N, let x; € {0,2} and let k; € {1,2} for1 <i < (.
If

A1) For any pair v,w € V(G), the number of edges joining v and w is n(v)n(w) if
v and w are in different parts, and 0 if v and w are in the same part.

A2) dge(w) = kin(w) for allw € V(G) and 1 < i < L.

A3) Zn(w) = Zn(w) =n, and

weL weR

A4) for 1 <i <, G(i) has a k;-edge-connected, k;-reqular disentanglement.

then G is the amalgamation of an (-edge-colored graph H = K, ,, in which H (i) is a
ki-regqular, k;-edge-connected subgraph for 1 <i < (.
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Proof: This follows from Theorem 4 of [3]
Any graph that satisfies (A1 — A4) is called an outline factorization.

3 Constructing an Outline Factorization

In the proof of the following theorem, we will construct an outline factorization by
first constructing a hamilton decomposition of K,, with a 1-factor leave, amalga-
mating the vertices, and then swapping some edges between two of the color classes
to form the 2-factor.

Theorem 3.1 Let n be odd, let H = K, ,, and let V(H) = {v;;|1 < i < n,j €
{L,R}}. For any2-factor U of H, there exists a hamilton decomposition of H—E(U)
with a 1-factor leave.

Proof: Since H is bipartite, every edge is of the form {v; 1, v; r}, and can be assigned
a difference value of (j — 1) mod n. Let E; be the set of edges having difference .
Let c: E(H) — {1,..., 2} be the (2!)-edge-coloring where

{ByicsUEyn} if1<i< 22,
c =
" Bas if | = 2L

is the set of edges colored ¢, with the index calculations being reduced modulo n.
n+l

Colors 1 through "T_l induce hamilton cycles of H, and color *}+ induces a 1-factor.
Let U be any 2-factor of H. U consists of a set of disjoint cycles spanning H,
and can be described completely by listing the lengths of the cycles. Therefore
we can suppose that U consists of ¢ cycles, the i* cycle having length s; > 4; so
4 | si = 2n. If ¢ = 1, then the problem reduces to finding a hamilton decomposition
of K,, with a 1-factor leave, which was settled by Laskar and Auerbach (see the
Introduction); so we will assume that ¢ > 2. We now amalgamate H to form a new
graph G. Let V(G) = {w;;|1 < i < gq, j € {L,R}}. In both parts, for each 1,
we amalgamate s;/2 vertices of H to form one vertex of G. This is done using the
amalgamating function ¢ : V(H) — V(G) defined by ¥ (v;;) = w,; if and only if
S ls./2<i< Y s./2and j € {L,R}.
It is easy to show that G satisfies (A1-A4), and is thus an outline factorization of
H. (A1) holds since each pair of vertices v,w € V(H) are joined by an edge if and
only if they are in different parts. (A2) holds since H(i) is k;regular. (A3) holds
since the amalgamating function maps every vertex of H to exactly one vertex of G.
Finally, (A4) holds, since H (i) is a k;-regular, r;-edge-connected disentanglement of

G(i) for 1 <4 < ™2 with
e s ntl
ki:{l if § = 24

2 otherwise

m_{o if i = 2

2 otherwise.
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We will modify the edge-coloring of G to disconnect G(1) into ¢ components, each
consisting of exactly 2 vertices. This is accomplished by swapping edges between
color classes 1 and 2.

Any vertex w; 1, is incident with 2n(w; 1) = s; edges of color 1. By the definition
of the edge-coloring ¢, exactly one of these edges joins w; ; to w;_i g, and the rest
join w; f, to w; g. Since n(w;r) > 2, w; g, is incident with at least 4 edges of color 1,
and thus there are at least 3 edges of color class 1 joining w; r, to w; g. Let S be the
set of all ¢ edges of color 1 joining w; 1, to w;_1 g for 1 < ¢ < ¢. Similarly, any vertex
w;,r, 1s incident with 2n(w; ) = s; > 4 edges of color 2. Exactly three of these edges
join w;  to wiry k. (If s; =4, then there is ezactly one edge colored 2 joining w;
to w; g.) For each 1 < i < ¢, pick an edge colored 2 joining w; 1, to w; g and put it
in the set Sy. Recolor the edges of G with ¢ : E(G) — {1,...,2*}, defined by

1 if e € Sy
dle) =142 ifee S

c(e) otherwise,

and denote this edge-colored version of G by G'.

Now G'(1) has g components, the i** component being induced by the two vertices
w;,r, and w; g. Furthermore, n(w;, ) + n(w; g) = s;. This recoloring has not changed
the degree of any vertex in any color class, so G’ still satisfies (A1-A3). However,
since G(1) is connected and G'(1) is disconnected, G' does not satisfy (A4) for the
original values of k;, 1 < i < "TH However, we can show that G’ does satisty (A4)
for

;)0 ifie {157}
' 2 otherwise.

For 3 < i < %L H(i) is a kyregular, x}-edge-connected disentanglement of G'(7).
This is clear, since colors 3 through ! were unaffected by the recoloring. To show
that G'(2) satisfies (A4) we need the following corollary of Nash-Williams [8]:

Corollary 3.1 Let k and | be nonnegative integers, with | even. Let C be a graph in
which the degree of each vertex is a multiple of k. Then C has an l-edge-connected
k-reqular disentanglement if and only if C' is [-edge-connected.

Each vertex of G'(2) has even degree, since the degrees were unchanged by
the recoloring. To show that G'(2) is 2-edge-connected, note that w;, is adja-
cent to w;_y g for 1 < i < ¢. So the vertex sets {w; r,w; g|i is even, j is odd} and
{wi,r,w;rl|i is 0dd, j is even} induce two cycles that, together, span V(G'). Because
n is odd, the 2-factor U must contain at least one cycle with length at least 6. Thus,
for at least one value of ¢, w; ; was joined to w; g by at least 3 edges of G(2) before
the recoloring. Only one of those edges was recolored, thus w; ;, is joined to w; g by
at least two edges of G'(2). These edges join the two cycles, and G'(2) is 2-edge-
connected. Thus by Corollary 3.1, G'(2) has a disentanglement that is 2-regular and
2-edge-connected.
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We now need to show that G'(1) has a disentanglement that is a disconnected
2-factor of K, with the i** cycle having length s;. This argument also uses Corollary
3.1. Let C be the i'* component of G'(1). C contains exactly 2 vertices, w; ; and
w;,r, each of which has degree s;. Since s; is the length of a cycle in a bipartite graph,
we know that s; is even and at least 4. Therefore C' is at least 4-edge-connected,
and by Corollary 3.1 has a 2-edge-connected, 2-regular disentanglement. Thus K (1)
consists of g cycles, the i** cycle having length s;.

Finally, we need to show that G’("TH) has a 1-regular disentanglement. Clearly
each vertex of G'(%#!) has a degree that is a multiple of 1, and G'(%f}) is O-edge
connected. By Corollary 3.1, G'(“41) has a 1-regular disentanglement.

So
U K(i)

25 m=

1R

U, and K(™) is the 1-factor leave.

is a hamilton decomposition of K, K(1 )
1 in a more direct manner, as the following

It is possible to prove Theorem 3.
proof shows.

Proof: We define the sets E; for 0 < ¢ < n — 1 as was done in the previous proof,

and let ¢: E(H) — {1,..., %} be the (“1)-edge-coloring defined by

By s UEy if2<i<2t
C; —= E1 @] En—l ifi = ].,
Ey iti=0.
, and H(0) is a 1-factor of H. Somewhat
H(1) contains every 2-factor of K, ,, and

H(7) is a hamilton cycle for 1 <4 < 2
surprisingly, as we will show below, H (0
so the result follows.

To find the 2-factor with cycles of lengths s1, 55, ..., 54, we will swap some edges
between cg and ¢;. Let t; = %(51 +534---+s;) for 1 <i < gandlet V(K,,)={Z,x
{L, R}} with the obvious vertex partition. For 1 < i < ¢, let Sp contain {(¢;, L), (t; +
1, R)}U{(t;, R)(t;+1, L)} and let S; contain {(¢;, L), (t;, R)}U{(t;+1, L), (t;,+1,R)}.
We now recolor H with the (%+)-edge-coloring ¢ : E(H) — {1,..., %} defined by

)
,_.

=

0 if e € S,
dle)=141 ifee Sy,
¢(e)  otherwise.

After this recoloring, H(1) is the prescribed 2-factor, H(0) is the 1-factor leave, and
the the remaining colors all induce hamilton cycles.

4 Conclusion

Theorem 3.1 settles the last remaining case in the problem of constructing hamilton
decompositions of Ky(,f) with a given 2-factor removed. In particular, Theorem 3.1
settles the case when p = 2 with a 1-factor leave. Rodger and Leach settled the
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case with p = 2 and no leave in [6], and Rodger settled the cases with p > 2 both
with and without 1-factor leaves in [9]. Together, these results allow us to state the
following general theorem:

Theorem 4.1 Let p > 2 and m > 1, and let U be a 2-factor of K. Then there
exists a hamilton decomposition of K — E(U) if and only if m(p — 1) is even, and
there exists a hamilton decomposition of K® — E(U) with a 1-factor leave if and
only if m(p — 1) is odd.
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