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Abstract

In this paper it is shown that all results previously deduced by the author
concerning the asymptotic number of graphs, digraphs, h-hypergraphs or
h-connected graphs and digraphs having diameter equal to k are also
valid for finite diameter greater than or equal to k as the number of
vertices tends to infinity. This implies that in the class of connected
graphs, digraphs, h-hypergraphs or h-connected graphs and digraphs with
diameter greater than or equal to & (k > 2) almost all have diameter equal
to k and settles a conjecture proposed in Discrete Math. 235 (2001), 291-
299.

1 Notation and preliminary results

All graphs or digraphs in this paper are finite, labeled (i.e., different means non-
identical), without loops or parallel edges or arcs. The connectivity x(G) of a graph
G is the minimum number of vertices whose removal results in a disconnected or
trivial graph. A graph G is said to be h-connected if x(G) > h. The strong con-
nectivity, denoted sk(G) of a digraph G is the minimum number of vertices whose
removal results in a digraph which is not strongly connected or trivial. A digraph
G is said to be h-strongly connected if sk(G) > h. A strongly connected digraph
is also said to be 1-strongly connected. The distance d(z,y) between vertices & and
y of a connected graph G is the length of a shortest path between them. For a
strongly connected digraph G the distance d(z,y) from vertex x to vertex y is the
length of a shortest path of the form (x,...,y). The eccentricity of a vertex z is
ecc(x) = maxyev(e)d(z,y). The diameter (resp. strong diameter) of G, denoted
d(G), is equal to maxzey(gece(r) = maxeyev(ed(z,y) if G is connected (resp.
strongly connected) and oo otherwise.

Consider V(G) = {1,...,n} and denote for every h > 1 by G(n;d = k) and
G(n;d > k); D(n;d = k) and D(n;d > k); G(n;h,d = k) and G(n;h,d > k);
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Dy(n;h,d = k) and Ds(n;h,d > k), the number of labeled graphs; digraphs; h-
connected graphs; h-strongly connected digraphs G of order n and diameter d(G) = k
and d(G) > k, respectively.
A simple hypergraph H = (X, &), of order |X| = n and size |€| = m, consists of a
vertex-set V(H) = X and an edge-set E(H) = £, where for each edge E € £ one
has E C X and |E| > 2. H is h-uniform, or is an h-hypergraph, if |E| = h for each
E in €. The degree of a vertex z € V(H) is denoted by dg(z). Two vertices u,
v of H are in the same component if there are vertices zo = u,zy,...,z; = v and
edges E1,...,Ey of H such that @;_,x; € E; for each 7 (1 <4 < k). If H has only
one component then it is said to be connected. A path P of length k in H [1] is a
subhypergraph comprising k + 1 distinct vertices x4,...,2;41 and k distinct edges
Ey, ..., E; of H such that z;, 2,11 € E; for each ¢, 1 <¢ < k.
For a connected hypergraph H the distance d(z,y) between vertices « and y is the
length of a shortest path between them. The eccentricity of a vertex z is ecc(z) =
maxyey(g)d(z,y). The diameter of H, denoted d(H), is equal to max,cy(g)ecc(z) =
max, yev(m)d(2,y) if H is connected and oo otherwise. By H(n, h;d = k); H(n, h;d >
k) and CH(n,h;d = k);CH(n,h;d > k) we denote the number of labeled h-
hypergraphs and connected h-hypergraphs H of order n and diameter d(H) = k
and d(H) > Fk, respectively.
If limy o0 f(n)/g(n) = 1, this is denoted by f(n) ~ g(n), or f(n) = g(n)(1 + o(1)).
It is well known [2] that almost all graphs and digraphs have diameter two and for
every fixed integer h > 1 almost all graphs are h-connected. Also in [5] it was proved
that for every fixed integer h > 1 almost all digraphs are h-strongly connected. In
[6], [10] it was shown that for every h > 3 almost all h-hypergraphs H of order n
have diameter one as n — oco. Hence for every h > 1 we have:

G(n;h,d=2) = 2(’5)(1 +0(1));

Dy(n;hyd =2) = 405) (1 + 0(1)).
Also, for every h > 3,

H(n, h;d = 1) = 20) (1 4 o(1)).
Notice that G(n;d = k) = G(n;1,d = k) and D(n;d = k) = Dy(n;1,d = k) since
all graphs and digraphs having diameter equal to k& must be connected (strongly

connected). This property is not longer true for d > k since in this case disconnected
graphs have diameter equal to oo which is greater than k.

2 The case of graphs and digraphs

Theorem 2.1 We have

G(n;d > 3) = 203)(0.75 + o(1))" and D(n;d > 3) = 4(3)(0.75 + o(1))";
G(nih,d > 3) = 203)(0.75 + o(1)) and Dy(n;h,d > 3) = 4(2)(0.75 + o(1))"
for every fixed h > 1.
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Proof: These equalities appear explicitely or can be deduced easily from the proofs
of Theorem 2.1 and Corollary 2.2 of [12], Lemma 1.3 of [9] and of Theorem 3.1 of
[14]. O

We shall consider three arithmetic functions:
A Fork > 4let Dy = {(n1,...,ng)|ni+-+ng =n,n; > hforevery1 <i < k-1
and ng > 1} and

n P
flnyhyna, ..o ng) = < )221=1(21) [ @™ = 1)m,
M1y e ey T i=1

where (ny,...,ng) € Dy. Further, let
f(n,h, k) =maxp, f(n, h;ni,...,ng)

13), [14]
B. Let k > 3, D(n,k,h) = {(n1,...,ng)|n1,- .., n are positive integers such that
ny+---+n=n;n; =1and n;+n;y1 > hforeveryi=1,...,k— 1} and

g(n,hyng,...,ng) = ( ’ )22?11 (") () ~Hilnetnoga=h3|
ny, s g

where (n1,...,nx) € D(n, k,h). We denote
g(n7 ka h) = maX(ny,..., nk)eD(n,k,h)g(na h; ny,... 7nk)-

The function g(n, h;ny,...,ng) counts the number of labeled h-hypergraphs with a
certain layered structure, having n; vertices on the level ¢ for 1 < ¢ < k [10].
C. Let £ > 4 and

k=2 (n k-2 ng_1+n
o(n,hyng, ... ng) = ( n )22¢1 (21) H(Qm _ 1)m+12( et k)7
Ny, ..., N -1
where ny + - +n, =n,n; > hforevery 1 <i < k—1and n, > 1. Let p(n, h, k) =
maxDWgo(n, h;ny,...,ng), where D,, is defined similarly to Dy. We recall the following

facts:
Theorem 2.2 [8] The equality
Fn,1,k) = 20)(3. 27542 4 (1))
holds for every k > 3.
Theorem 2.3 [13],[14] We have
F(n,hy4) = 20) (271 421 4 o(1))
for every h > 2;
f(n,h,k) — 2(;‘)((2h+1 _ 1)27kh+3h71 + 0(1))n

for every h > 2 and k > 5.
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Functions f(n,h,k) and ¢(n,h,k) have the same asymptotic behavior, as can be
seen below.

Theorem 2.4 We have
o(n,1,k) = 2()(3. 27542 1 o(1))"
for every k > 3;
pln, h,4) = 206) (2741 42714 o(1))"
for every h > 2;
QD(”, h, ,l») — 2(;)((2h+1 _ 1)27kh+3h71 + 0(1))n
for every h > 2 and k > 5.
Proof: If n, =a+1 and a > 1 then

SO(TL, h7 N1y, N3, Ng—2 + Q, N1, 1)
@(nah;nh cee 7nk)

> 1. (1)

Indeed, the ratio in the left-hand side of (1) equals

a+1 <2”k2+06 _
(nk7;+a) Q-2 — 1
We have (2™-2 — 1)* > 1, % > 2% and for every o, > 1 the following
inequality holds:

1) ™1
> (27%73 _ 1)‘120(%72—%71)'

a+1
(a+ﬂ+1) =
[e3

(@+1)2%%  (B+1)2* p2*  2.2¢

atB+ly ’
(5+1) B+a+1l f+a 24«

27f

since

> 1,

hence (o + 1)/(""‘;“‘) > 2721 which imply (1).

It follows that all systems (ni,...,ny) € D, which maximize ¢(n,h;ny,...,ny)
satisfy ny = 1. The same property holds for all systems (ny,...,n;) € Dy which
maximize f(n,1;ny,...,n;) [8] and f(n,h;ny,...,n) [14]. We have

99(77/7 h7 Nyy... ,’I’Lk) - 2Mk—1 nE
(Q”k—l — 1) )

f(n7h;nla"~ank) B
which implies
@(nah;nh sy N1, 1) < 9.
f(nah;nh ceey Ng—1, 1)
Let (ai,...,a5-1,1) € Dy and (fy, ..., Bk-1,1) € D, be such that
fln,hyaq, ... ap-1,1) = f(n,h,k) and p(n, h; B, ..., Be-1,1) = @(n, h, k). We get

1<
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o(n,h, k) =@(n,h;B,...,Br-1,1) < 2f(n,h; b1, ..., Br-1,1) <

2f(n, h;an,...,a5-1,1) = 2f(n,h,k) and @(n,h,k) = o(n,h;Br,. .., 0k-1,1)
oln,hyar,...,ap-1,1) > f(n,hyaq,...,a5-1,1) = f(n,h,k). Hence f(n,h,k)
o(n, h,k) < 2f(n,h, k), which concludes the proof by Theorems 2.2 and 2.3.

o AV

Theorem 2.5 The following equalities hold:
a) For every fived k > 4,

G(n;1,d > k) = 2(3) (3271 4+ o(1))" and
Dy(n;1,d > k) = 4(;)(3 27k o(1))7;

b) For every fized h > 2,

G(n;h,d>4) = 2(3)(2*’“2 +2°2 4 0(1))" and

Ds(”? h,d > 4) = 4(;) (2""2 +272 4 0(1))71’.

¢) For every fived h > 1 and k > 5,

G(n;h,d > k) = 2(3)((2h+1 — 1)2-kH3h=2 4 5(1))" and
Dy(n; hyd > k) = 43) (2841 = 1)2-kh+30=2 4 o(1))n,

Proof: Notice that in [8-14] it was proved that all asymptotic equalities in the state-
ment of the theorem hold in the case when graphs have diameter equal to k& > 4.
The idea of the proof of these evaluations is the same as in the case when diameter
is equal to k: We start with the lower bound construction by generating a large class
of connected graphs and strong digraphs of order n and diameter greater than or
equal to & > 4 and then prove that an upper bound for the number of these graphs
and digraphs has the same asymptotic expression.

Notice that it is sufficient to use the lower bounds for the number of graphs and
digraphs of order n and diameter equal to k proposed in [8-14] that have the asymp-
totic expressions appearing respectively in the right-hand sides of the equalities in
the statement.

For the upper bound we shall consider only case a) since cases b) and c) are sim-
ilar. If k is finite, & > 4, G is a connected graph of order n and z € V(G) has
eccentricity ecc(x) > k, then there exists a partition Vi(z) U---U Vj_1(z) U Wi(z)
of V(G)\{z} such that V;(z) = {yly € V(G) and d(z,y) =i} for 1 <i<k—1and
Wi(z) = {yly € V(G) and d(z,y) > k}. It follows that z is adjacent to all vertices
of Vi(z) and for every 2 < i < k — 1 any vertex z € Vj(z) is the extremity of an edge
zt, where t € V;_1(z). By denoting |V;(z)| = n; for 1 <i <k —1 and |Wy(z)| = ny,
the edges between V;(z) and V;11(z) can be chosen in (2™ — 1)™+! ways [8] and the

edges between Vj_;(z) and Wj(z) in at most 2(" 1) ways (the same argument

was used in [3]). We can write
{GIV(G) ={1,...,n},G is connected and ecc(z) > k}| <

ng—1t7k

D ( n-1 )22?212 (%) TE-2(2m — 1)m+12( 7)<

(z:f)maxmzp(n -1, Lng,...,n) = (z:f)go(n —-1,1,k),
since the number of compositions n —1 = n; +. . .+ny having k positive terms equals

(73)-

.....
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ecc(z) > k}| < n(Z:f)go(n -1,1,k) = 2(3)(3 -27k1 4 9(1))" by Theorem 2.4, since

n—2

the multiplicative term n(kfl) is estimated by o(1) in the expression.
If G is a digraph, with the same notation as above we find
{G|V(G)={1,...,n}, G is strongly connected and ecc(z) > k}| <

Sy detgmnet ( n-l )42?: (%) [IA2(2m — 1)meer JTAC) gmilmicattl)

N1, >1 MLk
ng_1+ng n
4( 5 )an(nk72+...+1) = 2(2) En1+...+nk:n—l Sp(n — ]_’ ]_; [T 7nk)7
N1,y 21
because

2(11,)@7;“’71)@) _ 2("k{1)+("2k)+ﬂk—1nk and 22;“:1 (nzzc) Hf:l gni(ni—1+..+1) — 2(;)
Furthermore Y n 4. 4np=n-1¢(n — 1,15nq,...,np) < (Z:f)go(n —1,1,k) and in the
N1,y > 1
same way as above we get

D(n;1,d > k) < |Upevie)1GIV(G) = {1,...,n},G is strongly connected and
ecc(z) >k} < n2(s) (z:f)go(n - 1,1L,k)= 4(3) (3-27%1 4 6(1))" by Theorem 2.4.
O

Corollary 2.6 We have

G(n;h,d = k) _ Dynih,d=k)

1 _
o0 Gnsh,d > k+1)  woee Dy(nyhyd > k + 1)

for every fixed h > 1 and k > 2.

Corollary 2.7 For k=2 or k =3 we have

G(n;d=Fk) . D(n;d = k)

lim ——— = =%
oo G(nyd > k + 1)

nw Dinyd > k+1) O
but
I G(n;d = k) . D(n;d =k)
m-——— = lim ————
n=0 G(n;d > k+1) oo D(n;d > k+1)

for every fixed k > 4.

Proof: The case k = 2 follows from the property that almost all graphs and digraphs
of order n have diameter two as n — oo and for £ = 3 the property was shown
in [7] (the case of graphs) and in [9] (the case of digraphs). If & > 4, G(n;d =
k) = G(n;1,d = k) and D(n;d = k) = Dy(n;1,d = k) and they have asymptotic
expressions that coincide with those given in Theorem 2.5 for the case of diameters
d > k. On the other hand, G(n;d > k + 1) and D(n;d > k + 1) are greater
than the number of disconnected graphs (resp. of digraphs that are not strong)
(when the diameter equals infinity) and these numbers are asymptotically equal to
n2("2") = 2(;)(2‘1 +0(1))" and n2na("2") = 4(3) (271 +0(1))", respectively [4]. Since
3-27k+1 < 9-1 for every k > 4 the conclusion follows. O
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3  The case of hypergraphs

Theorem 3.1 [10] We have g(n,3,h) = n(n — 1)2(2)_(2:2) =

n(n — 1)2(2)_[1/(h_2)!1”h_2+0("h_3) for every h > 3 and

g(n,k,h) = 9(R)+n" 1Bk ) to(n® 1) for every fived h > 3 and k > 4, where
B(k, h) m(h@ —k)—4) for odd k> 5 and

(i, h

)= ﬁ(h(él — k) —2) for even k > 4.

’

Lemma 3.2 [10] Let A, B be two disjoint sets, |A| = p and |B| = q. The number
of h-hypergraphs H with vertex set V(H) = AU B, E(H) has no edge included in A
or in B and dg(x) > 1 for every vertex x € B equals

a(p,q) = a(p,q) = ({)alpa—1) + (Yalp,g—2) — ...+ (-1)%,
where a(p, q) = 2("i%)=(2)-(%) for every p,q > 0.

Theorem 3.3 We have

2() (=) (1 + 0(1)) < CH(n, hyd > 2) < (Z)Q(Z)(Z_ﬁ),

%g(n,él,h)(l +o(1)) < CH(n, hid > 3) < g(n, 4, h)(1 + o(1)),

ﬁg(n,&h)(l +o(1)) < CH(n, hid > 4) < g(n, 5, h)(1 + o(1)),

and for every k > 5,
CH(n,h;d > k) = g(n,k+ 1,h)(1 + o(1)),
where g(n, k,h) is given by Theorem 3.1.

Proof: Notice that all asymptotic equalities and inequalities in the statement of the
theorem also hold in the case when hypergraphs have diameter equal to & > 2. We
use the same method of proof by producing lower and upper bounds, which have the
same asymptotic behavior for & > 5.

Since every h-hypergraph having diameter £ < oo is connected, we may use the same
lower bounds for the number of h-hypergraphs of order n and diameter equal to k
[10], [11].

The upper bound for CH(n, h;d > 2) follows from equality (1) of [10]. Let k be finite,
kE > 2, H be a connected h-hypergraph, v € V(H) and ecc(v) > k. By denoting
Vit1(v) = {ulu € V(H) and d(u,v) = i} for 0 < i < k—1 and Wy1(v) = {ulu €
V(H) and d(u,v) > k}, it follows that Vi(v) = {v}, Va(v), ..., Wit1(v) is an ordered
partition of V(H). We deduce that v is adjacent to all vertices of V3(v) and for every
2 <i< k-1, any vertex z € Viy1(v) is included in some edge E C V;(v) U Viy1(v)
which contains at least one vertex ¢ € Vj(v). If we denote |V;(v)] =n;for 1 <i <k
and |Wy41(v)| = ng41, since H is connected it follows that n; = 1,ny > h — 1 and
n; + niy1 > h for every 2 < i < k. By Lemma 3.2 we get
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|[{H|H is connected, V(H) = {1,...,n} and ecc(v) > k}| <

k=1 (n; np+n
)221:2 (h1) HZ;):_II a(ni, ni+1)2( k+hk+l).
We have [10]:

a(ni,ni_'_l) < a(ni,nﬂ_l) = 2("”2”1)*(1{)*(”?1)
and if n; + n;y1 = h then
a(ni,niy1) =1= o(" )= (5= (") 1,

Hence |{H|H is connected, V(H) = {1,...,n} and ecc(v) > k}| <
o (1) ()

i > (ntsemis)€D(nk41,) 9( A5 M1, - gy ), the same upper bound as for ecc(v) = k

.....

.....

and ecc(v) > k}| < n|{H|H is connected, V(H) = {1,...,n} and ecc(v) > k}| <
g(n,k+1,h)(1+ o(1)) for every k > 3, which concludes the proof in the same way
as for H(n, h;d = k). 0
Since g(n,k+ 1,h) = 2(2)+"h_15(’°+1’h)+°("h_1), where
Bk +1,h)=[1/(2(h—1)N](8h — kh — 2) (2)
for every odd £ > 3 and
B0+ 1,h) = [1/(2(h ~ 1))](4h — kb ~ 4 ®)
for every even k > 4, we deduce:
Corollary 3.4 For every fited h > 3 and k > 1 the following equality holds:
CH(n,h;d=k)
lim
n=o0 CH(n,h;d > k+1)
Corollary 3.5 Let h > 3 be fixred. Then for k=1 or k =2 we get
H(n,h;d = k)

I -
e Hn hd> k+1)

but H(n,h;d =k

lim ALRA=R)

n=o0 H(n,h;d > k+1)
for every fixzed k > 4. For k = 3 this limit equals oo for h = 3 and 0 for every fized
h>4.

Proof: For k = 1 the property is obvious since almost all h-hypergraphs have diam-
eter equal to one as n — oo. Let DH(n,h) denote the number of disconnected h-

hypergraphs of order n. In [6] it was shown that DH(n, h) ~ n2("") = p2()-(G21) =
n2(7) =" /(=00 e have

H(n,h;d > k+1)=CH(n,h;d > k+ 1)+ DH(n,h)
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and
H(n,h;d =Fk)=CH(n,h;d=k) < g(n,k+ 1,h)(1+ o(1))
for every k > 4 by Theorem 3.3.

We have found that g(n,k+1,h) = 9()+n"=1B(k+Lh)+o(n , where B(k + 1,h) is
given by (2) and (3), hence 1/(h — 1)! 4+ B(k + 1, h) < 0 for every k > 4. It follows
that for every k& > 4 we have lim,,o, H(n,h;d = k)/DH(n,h) = 0, which implies
limy oo H(n,h;d =k)/H(n,h;d > k+1) =0.

For k = 2 we deduce, as above, H(n,h;d > 3) = CH(n,h;d > 3) + DH(n,h) and
lim, oo CH(n,h;d =2)/CH(n,h;d > 3) = oo.

We get CH(n,h;d = 2) = H(n,hyd = 2) > 2(2)7(2:2)(1 + o(1)), hence
lim, e H(n,h;d =2)/DH(n,h) = co and the case k = 2 is proved.

For k = 3 we use an explicit form of g(n,4, h) given in [10] p. 289, namely:

h—l)

g(n,4,h) = %2(";2%(";5;5,

where (z), = z(r —1)---(z —n + 1) for every £ € IR and n € IN and double

inequality

mg(n7 4,h)(1+0(1)) < H(n,h;d=3) < g(n,4,h)(1+o(1)).

Note that the coefficient

((7;3"__}5!1 “(h+ 1)7(!h gy V2 L - 1)) = 2

by Stirling’s formula. We deduce
H(n,h;d>4) CH(n,h;d > 4) DH(n,h)

H(n,h;d=3)  H(n,h;jd=3) H(n,h;d=3)’

where lim, ,oo CH(n,h;d > 4)/H(n,h;d = 3) = 0 and DH(n,h)/g(n,4,h) =

92(h=1)—("kl1") —nlog2n+0(m)  Hepce limy, 0o DH(n,h)/H(n,h;d =3) equals 0 if h =3
and oo if h > 4, which concludes the proof. 0

4 Concluding remarks

It is not difficult to prove, in the same way as above, that the results for strongly
connected digraphs hold also for connected digraphs. In this case we must con-
sider the weak diameter, when the distance from vertex z to vertex y is defined as
the length of a shortest chain of the form [z,...,y] (in a chain some pairs of arcs
may have opposite orientations). Some asymptotic results about the number of di-
graphs of order n and weak diameter equal to k as n — oo were deduced in [9],
[12] and [13]. Also, in [11] it was conjectured that lim, . G(n;d = k)/G(n;d >
kE+1) = lim,o D(n;d = k)/D(n;d > k + 1) = oo for every fixed k > 2 and
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lim, e H(n,h;d =k)/H(n,h;d >k + 1) = oo for every fixed h > 3 and k£ > 1. By
Corollaries 2.6 and 2.7 in the case of graphs or digraphs this is true only for k = 2
and k = 3, but the property is always valid if we restrict ourselfs to the case of con-
nected graphs and of strongly connected digraphs, respectively. For h-hypergraphs
this property is true for £k = 1, k = 2 and k = 3 (only whenever h = 3) by Corollary
3.5, but it is always true in the class of connected h-hypergraphs by Corollary 3.4.
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