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Abstract

Splitting balanced incomplete block designs were first formulated by
Ogata, Kurosawa, Stinson and Saido in recent investigation of authenti-
cation codes. This article investigates the existence of a splitting balanced
incomplete block design (v, 2k, A)-splitting BIBD, and gives the spectra
of (v,2k, A\)-splitting BIBDs for (1) k =2, (2) k =3, and (3) k even and
A = 1. As an application we obtain some infinite classes of k-splitting
A-codes.

1 Introduction

In the investigation of authentication codes Ogata, Kurosawa, Stinson and Saido [5]
found that the splitting balanced incomplete block designs can be used to construct
k-splitting A-codes, whose impersonation attack probabilities and substitution attack
probabilities all achieve their information-theoretic lower bounds. Let v, b, [, u, k, A
be positive integers. A splitting balanced incomplete block design (v,b,1 = uk,\)-
splitting BIBD is a pair (X, B) where X is a v-set (of points) and B is a collection
of b subsets of X (called blocks) with size [ such that the following properties are
satisfied:

1. every B € B is expressed as a disjoint union of u subblocks of size k: B =
By UByU:---UB,,

2. for each pair set {z,y} of X, there exist exactly A blocks B = B;UByU---UB,
such that « € B;,y € B; (i # j).

The blocks of a splitting balanced incomplete block design (v, b,l = uk, A)-splitting
BIBD will be displayed in the form (a1, as, -+, ag;b1,b2, -, bg;-+-5¢1,¢0,+ -+, cp) in
this article.
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Let r be the number of blocks which contain a fixed point. We have the following
expressions from [5].
AMv—1) Av(v —1)

r=—— =

k(u—1))’ Cuk?(u—1)

In this article, we shall restrict our attention to splitting balanced incomplete
block designs with u = 2, denoted briefly by (v, 2k, A)-splitting BIBD. We have the
following necessary condition for the existence of a (v, 2k, A)-splitting BIBD.

Theorem 1.1 If there exists a (v, 2k, A)-splitting BIBD, then

A(v = 1) =0 (mod k), v(v —1) =0 (mod 2k?).

This article investigates the existence of (v, 2k, A)-splitting BIBDs, and gives the
spectra of (v, 2k, \)-splitting BIBDs for (1) k =2, (2) kK =3, and (3) k is even and
A = 1. That is, our main objective in this article is to establish the following results.

Theorem 1.2 There exists a (v, 2k, 1)-splitting BIBD for any v = 1 (mod 2k?) and
v > 2k% 4 1. Moreover, the necessary condition in Theorem 1.1 is also sufficient for
the case k is even and A = 1.

Theorem 1.3 The necessary condition in Theorem 1.1 is also sufficient for the case
k=2.

Theorem 1.4 The necessary condition in Theorem 1.1 is also sufficient for the case
k = 3 with the exceptions of v = 10 and A = 1, and v = 6 and A = 3 (mod 6).

2 Preliminaries

In this section we shall define some of the auxiliary designs and introduce some of
the fundamental results which will be used later. The reader is referred to [4] for
more information on designs, and, in particular, group divisible designs and splitting
group divisible designs.

Let K and M be sets of positive integers. A group divisible design (GDD)
GDIK,1,M;v] is a triple (X,G,B) where X is a v-set (of points), G is a collec-
tion of nonempty subsets of X (called groups) with cardinality in M and B is a
collection of subsets of X (called blocks) with cardinality at least two in K such that
the following properties are satisfied.

1. G partitions X,
2. no block intersects any group in more than one point,

3. each pair set {x,y} of points not contained in a group is contained in exactly
one block.
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The group-type (or type) of the GDD (X, G, B) is the multiset of sizes |G| of the
G € G and we usually use the “exponential” notation for its description: group-type
1°273% ... denotes i occurrences of groups of size 1, j occurrences of groups of size 2,
and so on.

We need to establish some more notations. We shall denote by GD[k,1,m;v]
a GD[{k},1,{m};v]. We shall sometimes refer to a GD[K,1,M;v] (X,G,B) as a
K-GDD if |B| € K for every block B € B.

For group divisible design, we have the following obvious result.

Lemma 2.1 There exists a 2-GDD of type m“n' for any positive integers m and n.

For our purpose we need to introduce the concept of a splitting group divisible
design. Let K and M be sets of positive integers. A splitting group divisible design
(splitting GDD) splitting GD[K, 1, M;v] is a triple (X, G, B) where X is a v-set (of
points), G is a collection of nonempty subsets of X (called groups) with cardinality
in M and B is a collection of subsets of X (called blocks) with cardinality at least
two in K such that the following properties are satisfied:

1. G partitions X;

2. every B € B is expressed as a disjoint union of u subblocks of size k: B =

3. no block intersects any group in more than one subblock;

4. for each pair set {z,y} of X not contained in a group, there exists exactly one
block B = B; U By U ---U B, such that « € B;,y € Bj(i # j).

The group-type (or type) of the splitting GDD is the same as that of the GDD. We
shall sometimes refer to a splitting GD[K, 1, M;v] (X, G, B) as a K-splitting GDD
if | B| € K for every block B € B.

For splitting group divisible designs, we can establish the following result which
will be used later.

Lemma 2.2 There exists a 2 x 3-splitting GDD of type 3" for any u > 2.

Proof The design we construct will have point set X = Z, x {1,2,3}, G =
{G1,Ga, -+ ,Gy}, where G; = {i — 1} x {1,2,3}. The block set B consists of the
following blocks:

(1,72, 835 (0 + 7)1, (i + )2, (1 4+ 5)3), 01 <u—2, 1< j<u—i—1

It is easy to check that the (X, G, B) is a 2 x 3-splitting GDD of type 3*“. O

We shall illustrate the main technique that will be used throughout the remainder
of this article, which is the “Filling in Holes” construction. In applying the “Filling
in Holes” construction, we require splitting GDDs with groups not necessarily all
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of the same size. To get these splitting GDDs, we use the following “Weighting
Construction”.

Theorem 2.3 Suppose that there is a K-GDD of type g162 -+ g, and that for each
k € K there is a 2 x 3-splitting GDD of type h*. Then there is a 2 x 3-splitting GDD

of type (hg1)(hgs) - - - (hgy)-

Proof We start with a K-GDD of type g192 - - gu (X, G, B), where G = {G1,Ga,- -,
G}, |Gi| = gs. For each B € B, let Xp = {a1,az, -, ax} be the set of points of B,
and X3 = Xp x {1,2,---,h}. Let (X}, Ag) be a 2 x 3-splitting GDD of type h*.
Then the design we construct will have point set

X'=Xx{1,2,---,h}

and the block set

B = 4s.
BEB
It is easy to check that the (X*,B*) is a 2 x 3-splitting GDD of type (hg1)(hga) - - -
(hgu) O

We are now in a position to give our main construction.

Construction 2.4 Suppose

1. there is a 2 x 3-splitting GDD of type g1 * Gu,

2. there is a (g; +w,2 x 3, A)-splitting BIBD for each 4,1 < i < u, where w = 0
or 1.

Then there is a (v,2 x 3, A)-splitting BIBD, where v = w 4+ 1<,y gi-

Proof We start with a 2 x 3-splitting GDD of type g1z --- g, (X, G, B), where G
= {G1,Gs,-+,Gu}, |Gi| = gi for 1 < i < u. For each Gy, let (G; U W, A;) be a
(g: +w,2 x 3, \)-splitting BIBD, where |W| =0 or 1 and X N W = (. Then the
design we construct will have point set

X"=XUWwW,

and the block set
B*:B’U( U AZ),
1<i<u
where B’ is a block collection obtained by repeating every block of B A times. It is
easy to check that (X*,B*) is a (v,2 x 3, A)-splitting BIBD. O

In particular, we have the following construction.
Lemma 2.5 Let m, u and n be positive integers and w = 0 or 1. If there exist a

(3m+ w, 2 x 3, \)-splitting BIBD and a (3n+w, 2 x 3, \)-splitting BIBD, then there
exists a (3mu + 3n + w, 2 x 3, A)-splitting BIBD.
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Proof We begin with a 2-GDD of type m“n! (for whose existence, see Lemma 2.1)
and give the points weight 3 and apply Theorem 2.3 to obtain a 2 x 3-splitting GDD
of type (3m)¥(3n)!. The input design we need, a 2 x 3-splitting GDD of type 32,
comes from Lemma 2.2. The result then follows from Construction 2.4. m|

We also need the following construction whose proof is easy.

Lemma 2.6 If there exist a (v, 2 x 3, A;)-splitting BIBD and a (v, 2 x 3, \y)-splitting
BIBD, then there exists a (v,2 x 3, A\; + A2)-splitting BIBD.

In the remainder of this section we shall give some direct constructions, which are
variants of cycle construction used to construct balanced incomplete block designs.

Let (X,+) be an Abelian group of order v. A (v,b,1 = uk, \)-splitting difference
family over X is a collection of r subsets of X, {B!, B%,---, B"}, such that each B"
is expressed as a disjoint union of u subsets of size k: B* = Bf UB}U---U B!, and
the multiset union

U {e~y:zeBlye B} (i #£)), v #y}=MX\{0}).
1<h<lr

The subsets B* (1 < h < r) are called based blocks. It is easy to see the existence
of a (v,b,l = uk,\)-splitting difference family over X implies the existence of a
(v,b,1 = uk, \)-splitting BIBD (X, B), in which the block set B is obtained by
developing the based blocks mod wv.

Let (G,+) be an Abelian group of order n, M = {1,2,---,m — 1}, and let
X =G x M ={a,:s € M}. The group G operates on X by the rule

as+ 6 =(a+pP)s foral ged.

For any subset A C X, the set A+ (3 = {z + 8 : € A} is defined by the above
rule. Let {B!,B%,---,B"} be a collection of r subsets of X, such that each B" is
expressed as a disjoint union of u subsets of size k: B" = B U B U ---U B! and
the multiset union

U {a:—y:xsEBf,yseB]’-’ (i #£7), £y} =AG\ {0}) forall se M,

1<h<r
U {z—y:z.eBly€Bl (i#))}=AG forall s;teM,s<t.
1<h<Llr

The subsets B" (1 < h < r) are called base blocks. It is easy to see that we can
construct from the base blocks a (mn,b,l = uk, \)-splitting BIBD (X, B), in which
the block set B is obtained by developing the base blocks mod n.

3 (v,2x2,))-splitting BIBD

In this section, we shall give the spectrum of a (v,2 x 2, A)-splitting BIBD. From
Theorem 1.1, we have the following necessary conditions for the existence of a (v, 2 x
2, A)-splitting BIBD:
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e v =1 (mod 8) when A =1, 3 (mod 4).
e v =0, 1 (mod 4) when A =2 (mod 4).
e v >4 when A =0 (mod 4).

From Lemma 2.6, we only need to consider the cases v = 1 (mod 8) and A =1,
v=0, 1 (mod4) and A=2,and v >4 and X\ = 4.

3.1 The case A =1
In this subsection, we shall investigate the existence of a (v, 2 x 2, 1)-splitting BIBD.

Lemma 3.1.1 There exists a (v, 2k, 1)-splitting BIBD for any v = 1 (mod 2k?)
and v > 2k% + 1.

Proof The design we construct will have point set X = Z,. The block set B is
obtained by developing the following blocks mod v:

(0,1, k — 1;ik* + k,ik* + 2k, -, (i + DE?), 0 < i< (v—1)/(2k?).

It is easy to check that (X, B) is a (v, 2k, 1)-splitting BIBD. |

We are now in a position to prove Theorem 1.2.

The proof of Theorem 1.2: Theorem 1.1 and Lemma 3.1.1 complete the proof
of Theorem 1.2. a

3.2 The case A >1

In this subsection, we shall investigate the existence of (v,2 x 2, A)-splitting BIBD
for A = 2 and 4. For this purpose we need to introduce the concept of a perfect
Mendelsohn design.

Let S = {51,582, "+, sk} be a set of k distinct elements. Then the ordered pair
(si,8;) is said to be t-apart in the cycle (s1,82,---,s5) if j —i = ¢ (mod k). Let
v, k, A be positive integers. A perfect Mendelsohn design (v, k, \)-PMD is a pair
(X, B) where X is a v-set (of points) and B is a collection of subsets of X (called
blocks) with size k such that for any z,y € X, © # y and for any ¢, 1 <t < k-1,
there exist exactly A blocks B € B in which the ordered pair (z,y) appears t-apart.

For perfect Mendelsohn designs, we have the following result.

Lemma 3.2.1
(1) ([2], [3], [6]) There exists a (v,4,A)-PMD if and only if Av(v—1) = 0 (mod 4)
with the exception of v =4 and A odd, and v =8 and A = 1.

(2) ([1], [7]) There exists a (v, 6, 3)-PMD if and only if v > 6 with the possibly ex-
ception of v € E, where E = {6,10,12, 16, 18,22, 24, 30, 33, 34, 39, 45, 48, 51, 54, 60}.
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Perfect Mendelsohn designs provide a method of constructing splitting balanced
incomplete block designs.

Lemma 3.2.2 If there exists a (v, 2k, \)-PMD and k = 2 or 3, then there exists a
(v, 2k, k)-splitting BIBD.

Proof Let (sq, S, -, Sox) be any block of the (v, 2k, A)-PMD (X, B). We rearrange
this block as follows:
(517 53577, 82k—17 52, 54, " ,52k)-

Performing such rearrangements to every block of the PMD, these rearranged blocks
constitute the design we need. Clearly the above rearrangement indicates that for
each pair set {x,y} of X, there exist exactly 2\ blocks B = B; U B, such that
x € By, y € By from the l-apart property of a PMD. For the case £k = 3, the 3-
apart property of a PMD provides exactly another A blocks B = B; U B such that
r € By, y € Bs. O

Lemma 3.2.3 There exists a (v,2 x 2,2)-splitting BIBD for any v =0, 1 (mod 4)
and v > 4.

Proof For the cases v =4 and 8, we construct the designs directly as follows:
v=4: X =12,
B: (0,1;2,3),(0,2;1,3),(0,3;1,2).
v=38: X =Z;U{z},
B: Develop the following blocks mod 7:
(z,0;4,5),(0,2;1,5).

For the other values of v, we apply Lemma 3.2.2 with A\ = 1 to obtain the desired
desigus; the input design we need, (v,4,1)-PMD, comes from Lemma 3.2.1 (1). O

Lemma 3.2.4 There exists a (v,2 x 2,4)-splitting BIBD for any v > 4.

Proof We apply Lemma 3.2.2 with A = 2 to obtain the desired design; the input
design we need, (v, 4, 2)-PMD, comes from Lemma 3.2.1 (1). O

We are now in a position to prove Theorem 1.3.

The proof of Theorem 1.3: Theorems 1.1 and 1.2 and Lemmas 3.2.3, 3.2.4 and
2.6 complete the proof of Theorem 1.3. a

4 (v,2 x 3,\)-splitting BIBD

In this section, we shall give the spectrum of (v,2 x 3, A)-splitting BIBDs. From
Theorem 1.1, we have the following necessary conditions for the existence of a (v, 2 x
3, A)-splitting BIBD:
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e v =1 (mod 9) when A =1, 2 (mod 3).
e v =0, 1 (mod 3) when A\ =3, 6 (mod 9).

e v > 6 when A =0 (mod 9).

From Lemma 2.6, we only need to consider the cases v = 1 (mod 9) and A = 1,
v=0, 1 (mod 3) and A=3,and v > 6 and A = 9.

4.1 The case A =1

In this subsection, we shall investigate the existence of (v,2 x 3,1)-splitting BIBDs.
From Theorem 1.2 we only need to consider the case v = 10 (mod 18). There is no
(10,2 x 3,1)-splitting BIBD by computer search.

Lemma 4.1.1 There exists a (28,2 x 3,1)-splitting BIBD.

Proof We construct the design directly as follows:
X =77 x {1,2,3,4},
B: Develop the following blocks mod 7:
(01,11,21;31702,32), (01,11,21;03733,04), (01,02722;42743,24),
(01,02,54; 14, 34,44), (02, 03,23;64,54,64), (02,13,04;03, 53, 63). O

Lemma 4.1.2 If v = 10 (mod 18) and v > 46, then there exists a (v,2 x 3,1)-
splitting BIBD.

Proof For any v = 10 (mod 18) and v > 46, we can write v = vy + 27 + 1, where
vo = 0 (mod 18) and then there exists a (vg + 1,2 x 3, 1)-splitting BIBD by Theorem
1.2. The result then follows from Lemma 2.5 with w = 1. m|

Combining Theorem 1.2 and Lemmas 4.1.1 and 4.1.2, we have established the
following result.

Theorem 4.1.3 There exists a (v,2 x 3, 1)-splitting BIBD for any v = 1 (mod 9)
and v > 10.

4.2 The case A\ > 1

In this subsection, we shall investigate the existence of (v,2 x 3, \)-splitting BIBDs
for A =3 and 9. We first consider the case v = 6.

Lemma 4.2.1 There does not exist a (6,2 x 3, A)-splitting BIBD for any odd A.

Proof Let X = Zg and A be an odd integer. Suppose that there exists a (6,2 % 3, A)-
splitting BIBD (X, B), where B is obtained from the following blocks:
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By =(0,2,3;1,4,5), By =(0,2,4;1,3,5),
By =(0,2,5:1,3,4), By =(0,3,4;1,2,5),
Bs = (0,3,5;1,2,4), Bg=(0,4,5;1,2,3),
B; =(0,1,5:2,3,4), Bs=(0,1,4;2,3,5),

B9 = (07 173;27475)7 BlO - (0, 1,2,3,4,5)

Without loss of generality, we can assume that B; occurs in B exactly x; times,
1 < i < 10. From the pair sets {0,1}, {3,4}, {3,5} and {4,5} all occurring in
exactly A blocks, we have the following equalities.

T1+ Ty + T3+ x4+ 25+ 36 = A, (1)
Ty + Ty + T5 + T + Ty +Tg = A, (2)
T1+ X3+ Xy + T+ 7 + 29 = N, (3)
Ty + T3+ T4+ 25+ 27+ 38 = . (4)

Combining equalities (1) and (2), (1) and (3), and (1) and (4), respectively, we have:
T3+ Ty =T+ Ty, Ty+ Ts=T7r+ Ty, T1+Te=T7+ Ts.

Consequently, A = @1 + 22 + 3 + 24 + @5 + 26 = 2(27 + x5 + 29) is even, which is a
contradiction. Thus a (6,2 x 3, \)-splitting BIBD cannot exist for any odd . O

Lemma 4.2.2 There exists a (v,2 x 3, 3)-splitting BIBD for v € {7,9,10, 12, 15}.

Proof We construct the designs directly as follows:

X =2y,

B: Develop the following blocks mod v:

v="7:(0,1,3;2,4,5).

v=29: (0,3,6;1,4,7) (choose the first 3 blocks),

(0,1,5;4,6,7

0,1,3:5,6,8
0,2,51,3,8
0,4,8;1,5,9
0,1,3:6,7,9
0,1,4;2,3,8
0,1,3;8,9,11) (choose the first 5 blocks),
0,1,2;3,4,7),
0,1,3;6,8,14). 0

(choose the first 5 blocks),
(choose the first 4 blocks),
(choose the first 6 blocks),

- = = =

(
(
(
(
(
(
(
(

Lemma 4.2.3 If v =0 (mod 3) and v > 18, then there exists a (v, 2 x 3, 3)-splitting
BIBD.
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Proof For any v = 0 (mod 3) and v > 18, we can write v = 9u + 9 + s if
v=s (mod 9), where s = 0,3 or 6, and then there exists a (9 + s,2 x 3, 3)-splitting
BIBD from Lemma 4.2.2. The result then follows from Lemma 2.5 with w =0. O

Lemma 4.2.4 If v =1 (mod 3) and v > 13, then there exists a (v, 2 x 3, 3)-splitting
BIBD.

Proof For any v = 1 (mod 3) and v > 13, we can write v = 6u + 6 + s + 1 if
v =35+ 1 (mod 6), where s = 0 or 3, and then there exists a (6 + s+ 1,2 x 3,3)-
splitting BIBD from Lemma 4.2.2. The result then follows from Lemma 2.5 with
w=1. a

Combining Lemma 4.2.1 to Lemma 4.2.4, we have established the following result.

Theorem 4.2.5 There exists a (v, 2 x 3, 3)-splitting BIBD for any v = 0, 1 (mod 3)
and v > 6.

We then have the following result for A = 9.
Theorem 4.2.6 There exists a (v,2 x 3,9)-splitting BIBD for any v > 6.

Proof Combining Lemma 3.2.2 and Lemma 3.2.1 (2), we only need to consider the
case v € E (in Lemma 3.2.1 (2)). Noticing that v = 0, 1 (mod 3) for v € E, we
know that the result is true from Theorem 4.2.5, Lemma 4.2.1 and Lemma 2.6. O

We are now in a position to prove Theorem 1.4.

The proof of Theorem 1.4: Theorems 4.1.3, 4.2.5 and 4.2.6 complete the proof
of Theorem 1.4, apart from v = 6 and 10. For these cases, we construct directly a
(6,2 x 3,6)-splitting BIBD and a (10,2 x 3,2)-splitting BIBD as follows:

v==06: X = Zz U{x},
B: Develop the following blocks mod 5:
(x,0,1;2,3,4), (x,0,2;1,3,4).
v=10: X = Z; x {1,2},
B: Develop the following blocks mod 5:
(01,11,0;21,15,25), (Or, 11,155 2;,04,35). 0

5 k-splitting A-code

An authentication code (A-code) is called splitting if a message m (€ M) is not
uniquely determined by the source state s (€ S) and the key e (€ E). In this case,
a message m is computed as m = e(s,r), where 7 is a random chosen from some
specified finite set. If we define

e(s) ={m:e(s,r) =m for some r},
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then splitting means that |e(s)| > 1. The concept of splitting is very important in
the context of authentication codes with arbitration. We say that a splitting A-code
is k-splitting if |e(s)| = k for any e € F and any s € S. In a k-splitting A-code, we
have

pr 2 KIS Ps 2 (k= 11|

where p; is the impersonation attack probability and pg is the substitution attack
probability.

Ogata, Kurosawa, Stinson and Saido found that splitting balanced incomplete
block designs can be used to construct k-splitting A-codes, whose impersonation
attack probabilities p; and substitution attack probabilities ps all achieve their
information-theoretic lower bounds.

Theorem 5.1 ([5]) If there exists a (v,b,uk, 1)-splitting BIBD, then there exists a
E-splitting A-code with |[M|=wv, |E| = b and |S| = u such that:

1 pr = uTkv bs = us}k_*ll),

2. each source state occurs with equal probability.

From Theorem 1.2 we have established the following result.

Theorem 5.2 Let k be a positive integer, v = 1 (mod 2k?) and v > 2k%+ 1. Then
there exists a k-splitting A-code with |M| =wv, |E| = % and |S| = 2 such that:

2(k—1
1. p[:%, bs = ('1}71)7

2. each source state occurs with equal probability.

From Theorem 1.4 we have established the following result.

Theorem 5.3 Let v = 1 (mod 9) and v > 19. Then there exists a 3-splitting
A-code with [M|=v, |E| = v(v Y and |S| = 2 such that:

_ 6 __ 4
1 pf_gv pS—v—l’

2. each source state occurs with equal probability.
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