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Abstract

A Cayley map is an embedding of a Cayley graph G in an orientable
surface, such that the group of orientation-preserving automorphisms of
the embedding contains a subgroup acting regularly on the vertex set of
G. We investigate the problem of determining for which n there exists a
Cayley map with underlying graph K, ,, such that all faces of the map
are triangular.

1 Introduction

Group actions on graphs and maps have received considerable attention in recent
years. A prominent role in the study of group actions is played by regular actions.
The weakest "degree of symmetry” occurs when a group acts regularly on vertices
of a graph or a map; this is the case of Cayley graphs and maps. On the opposite
end of the spectrum, in the case of maps the highest symmetry is achieved when a
group acts regularly on flags, giving rise to regular maps.

In this contribution we will study the above phenomena on triangular embeddings
of the complete tripartite graph K, , ». In particular, we will focus on conditions un-
der which K, , », admits a triangular Cayley map. It turns out that among triangular
embeddings of K, , , there is a unique one which is regular; we will characterize the
values of n for which this regular map of K, ,, is a Cayley map.

Our choice to investigate triangular Cayley maps of K, , , is motivated by the
following facts. Triangular embeddings are automatically genus embeddings, and
these are of primary interest in topological graph theory. Historically the most im-
portant were orientable triangular embeddings of complete graphs K, for n =0, 3,4
or 7 (mod 12). Their construction constitutes one third of a complete solution of
the famous Heawood Map Colouring Problem which took about 70 years to solve [8].
In the case n = 0,4 and 7 (mod 12), the solution of [8] was based on constructing
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a triangular Cayley map of K,. Very recent result of [1, 4] show that the number
of triangular embeddings of K, exceeds 2°*" for n in certain residue classes mod 36.
From our point of view it is important to note that some of these constructions re-
quire a large number of triangular embeddings of K, , , as ingredients. It is therefore
of interest to ask which of these embeddings are Cayley maps.

In general, Cayley maps and regular Cayley maps have been subject of a thorough
investigation in [7]. For complete tripartite graphs it was shown in [5, 6] that for
each n there is a unique regular triangular map with underlying graph K, ,,. The
question of characterization of all values of n for which this map is a Cayley map is
therefore natural in the above context.

The paper is organized as follows. In Section 2 we present the necessary back-
ground on Cayley graphs and Cayley maps. Section 3 contains results for small
orders n and provides an infinite family of values for which there is no triangular
Cayley map of K, ,,. In Section 4, regular triangular Cayley maps with underlying
graphs K, ., are characterized. In Section 5 we study conditions for a triangular
Cayley map to extend (in a certain way) to a larger triangular Cayley map. All
results are summarized in Section 6.

2 Preliminaries

Let I be a finite group and let X be a finite set of elements of I" closed under taking
inverses (i. e. z € X implies 7! € X) and such that 1 ¢ X. Then the Cayley
graph G = Cay(T, X) for I' and X is a graph with vertex set V(G) =TI and arc set
D(G) = {(g,92)|g € T,z € X}. It is obvious that such a graph is vertex transitive
and the degree of every vertex is | X|. If h = g, then the arc (h, ha~!) is the reverse
arc to (g, gz), and the pair of the two arcs forms an undirected edge. Our Cayley
graphs are therefore undirected. Moreover, they do not contain multiple edges, loops
and semi-edges. Clearly, Cay(I', X) is connected if and only if X generates I'. Let
us now state and prove a necessary and sufficient condition for Cay(T', X) to be
isomorphic to K, ..., (a complete k—partite graph with & parts of order n).

Proposition 1: Let k > 1 be a natural number. A Cayley graph Cay(T,X) is
isomorphic to a complete k-partite graph Ky ..., if and only if T\ X is a subgroup
of T of index k.

Proof: Let Cay(I',X) = K,,,...,. Then T splits into % disjoint sets X;,1 < i < F,
with |X;| = n, such that there is no edge {z,y} if the vertices z,y are in the same
set X;. Let 1 € X;. Then there are (k — 1)n edges from the unit element 1 to the
sets Xo,..., X;. Let Ur, X; = X, so that X; = '\ X. Furthermore, let z,y € X,
and zy = z. If z ¢ X then z is one of the vertices for which there exists the edge
{z, z}, and this holds only if y € X, a contradiction. Summing up we obtain the
following: X is a subset of I' and for every z,y € X; we have zy € X;. Therefore
X, is a subgroup of I'. Because |X;|=...=|Xi| =n, X; has index kin T".

For the converse, let X; = I' \ X be a subgroup of I" of index k. Then we can
decompose the group I' into the right cosets X; = 1X;, Xy = X, where zy € X1,
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X3 = 23X, 23 € X1UXs,... and X, = 2 Xy, 2 & Uf;ll X;. It is obvious that in
Cay(T, X \ {1}) there are only edges of type {x,y}, where z,y are from the same
coset X;. It follows that its complement Cay(T, X) has to be isomorphic to K ... n-
O

Corollary 1: A Cayley graph Cay(T', X) is isomorphic to Kppnn if and only if T\ X
s a subgroup of T' of index 3.

For the purpose of this article, a surface will be a connected, oriented, 2-dimensional
manifold without boundary. A map M is a cellular embedding of a graph G in a
surface §, which mens that each component of the complement of the graph in the
surface is homeomorphic to an open disc; the graph G is the underlying graph of
M. Every map can be described by a rotation P acting on the set D(G) of all arcs
(edges with preassigned direction) of G defined as follows: for each vertex v the
orientation of S induces a cyclic permutation P, of the set D(v) of arcs emanating
from v. We call P, the local rotation of the embedding at the vertex v. Then the
product P = [[,ey P is a permutation of D(G), called rotation of G. The map M
is completely described by the pair (D(G), P); we formally set M = (D(G), P) or
just M = (G, P). Faces of M can be recovered with the help of the rotation P and
the involution L that sends each arc of D(G) onto its reverse. Then, oriented face
boundaries of M are in a 1-1 correspodence with cycles of the permutation PL.

Let now M = (G, P) be a map where the underlying graph G is a Cayley graph
for a group I' and a generating set X. Let us arrange the generating set to form a
cyclic sequence X = (zo,...,24-1) where d = |X|. We say that M is a Cayley map
for T and the cyclic sequence X, denoted by CM(T, X) if the rotation P is given
by P(g,9x;) = (9,92i+1), where ¢ is taken mod d. It is clear that different cyclic
sequences of the generating set may yield different Cayley maps. In what follows,
whenever we use the symbol X in the context of a Cayley map, we will automatically
assume that X denotes a cyclic sequence of generators. The arc-reversing involution
L is now given by L(g, 7;) = (gz;, z; '). Cayley maps, like Cayley graphs, are vertex
transitive. To reconstruct faces of a Cayley map CM(T, X) it is therefore sufficient
to repeatedly apply the permutation PL to an arc of the form (1,z;). Observe
that PL(1,2;) = P(x;, ;') = (x;,y) where y is the successor of ;! in the cyclic
generating sequence X. It follows that a sequence of arcs (go,¥o);-- -, (9r—1, Ya—1)
forms the boundary of a face if and only if g; = ¢;_1y;—1 and y; is the immediate
successor of ;) in the cyclic generating sequence X.

Now we will present a necessary and sufficient condition for a Cayley map to be
triangular, that is, to have all faces bounded by triangles.

Let M = CM(T,X) be a Cayley map with the generating sequence X =
(2o, @1, .., x4-1). We say that (z,y) is a consecutive pair of X if v = x; and y = @41
for some i € [d] = {0,1,...,d — 1}, ¢ being taken mod d.

Proposition 2: Let M = CM(T', X) be a Cayley map. A necessary and sufficient
condition for M to be a triangulation is the following: If (z,y) is a consecutive pair
of X then (y~t,y~'a) and (z7'y, 27! are consecutive pairs of X.
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Figure 1: Part of a triangular Cayley map

Proof: Let M be a Cayley triangulation and let one of its triangular faces be as in
Figure 1. Then the existence of the consecutive pair (z,y) in Figure 1 implies that
the pairs (y~',y 'x) and (z7'y,z™') are also consecutive.

Conversely, let M be a Cayley map, such that whenever (z,y) is a consecutive
pair of X then (y~!,y~'z) and (z7'y,27!) are consecutive pairs of X. By the face
reconstruction procedure it follows that the arcs (g,v), (9y,y '), (gz,z™") form a
triangular face. Since this applies to every consecutive pair (z,y), each face of the
map is a triangle.O

Observe that the three consecutive pairs (z,y), (y ',y 'z) and (z7'y,27*) of X in
a Cayley triangulation are all distinct except when 2® = 1 and y = ~! in which case
they yield a single consecutive pair of the form (z,271). Accordingly, faces of the map
come in two varieties: Type 1 faces correspond to triples of consecutive pairs where
23 £ 1ory # 27!, and type 2 faces correspond to a single consecutive pair of the
form (z,z') where ¥ = 1. It is known [3] that each oriented triangulation of K, ,
can be face 2-coloured, say, black and white. Therefore, in a Cayley triangulation
M = CM(TI',X) of K,,, we obtain n black and n white triangular faces at every
vertex of our map M. Let t,; be the number of black triangles of type 1 and let ¢,
be the number of black triangles of type 2 at a vertex. Similarly, we define t¢,,; and
tws as the numbers of white triangles of type 1 and 2 at a vertex. We then have:

Corollary 2: n = 3ty + tps = 3ty1 + tws-

As a consequence of Corollary 2 we obtain the following result.

Corollary 3: Let n be not divisible by 3, let I' be a group of order 3n and let
M = CM(T,X) be a Cayley triangulation of K, .. Then the generating sequence
X contains at least two consecutive pairs of the form (z,z™').
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3 Triangular Cayley maps of K, ,,: small orders and non-
existence results

We begin with discussing Cayley triangulations of K, ., for small orders n. The
spherical map of K1 = Kj is clearly a triangular Cayley map for the group Zs.
The octahedron represents a triangular embedding of K, 5 » which is a Cayley map for
the dihedral group Ds = {(a,b|a® = b* = (ab)® = 1) with cyclic generating sequence
X = (a,a?, ab,a®b). A triangular embedding of K3 3 3 can be obtained from the unique
(up to isomorphism) hexagonal embedding v of K3 3 in a torus by inserting a vertex in
the centre of each of the three hexagonal faces of ¢ and joining each such vertex to the
six vertices on the boundary of corresponding face [9] (see Section 4). This is again
a Cayley triangulation of Kj 33, for the group Zs x Z3 = {(a,bla® = b* = 1,ba = ab)
and the generating sequence X = (a, a?, ab, ab, ab*,a’b?). The case n = 4 is slightly
more complicated and here we need to recall metacyclic groups, which are semidirect
products of two cyclic groups and have the standard presentation

Zoy51Zm = (a,bla™ = b™ = 1,ba = a*b), (1)

where ged(n, k) =1, 1 <k <n and k™ =1 (mod n). If there exists a Cayley
triangulation CM(T, X) of K444, we have |T'| = 12,|X| = 8 and using Corollary 2
we obtain 4 = 3ty + tpe and 4 = 3ty + tys. Therefore, the generating sequence X
contains 2, 5, or 8 consecutive pairs of the form (x,27!). It is a matter of routine to
check that the number of consecutive pairs of the form (z,z7') has to be equal to 2.
Using Proposition 2 we obtain the following three possibilities for the distribution of
elements of X:

i) X = (a,a™,b,07%,¢,d,e,c7})

i) X = (a,a7t,¢,b,671,d,c7e)

iii) X = (a,a7 Y, ¢,d, 0,071, 7L e).

In all cases we need two elements of order two and six elements of order at least
three in the sequence X. There are five pairwise non-isomorphic groups of order 12,
and in what follows we exclude each of these (one at a time).

The cyclic group Zi1s = {a]a'? = 1) can be excluded since there do not exist two
generators of order two. If I' = Zg x Z, = (a,bla® = b* = 1,ba = ab), the only
subgroup of index 3 in I is X| = (a®,b). Then the generating set for CM (I, X) is
X =T\ X; and there do not exist two generators of order two in X. In the case of the
group Zgx3Zy = {a,bla® = b> = 1,ba = a®b) it is easy to see that there do not exist six
generators of order at least three. Similarly, in Z3xyZ; = (a,bla® = b* = 1,ba = a?b)
there do not exist two generators of order two. Finally, let I' = A, = ((12)(34), (123)).
Then X; = ((12)(34),(13)(24)) is the only subgroup of index 3 in I'. Furthermore,
X =T\ X; and there do not exist two generators of order two in X. We conclude
that there is no Cayley triangulation of Ky 44.

If n = 5 there is no triangular Cayley map of Ky 5; this will follow from Theo-
rem 1.

It can be checked that in the case n = 6 there is a unique (up to isomorphism)
triangular Cayley map of Kggg. It is a Cayley map for the group I' = S5 x Z5 =
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(a,b,cla® = b* = ¢® = 1,ba = a’b,ca = ac,cb = bc) and for the generating sequence
X = (a,a?c,abc?, a?be, ac?, a?c?, abe, a*bc?, ac, a?, ab, a?b). Later we will see that this
generating sequence can be obtained by applying Lemma 1 to the generating sequence
for triangular Cayley map of K, 52 mentioned above.

In the remaining part of this section, on the basis of Proposition 2 we will identify
an infinite family of values of n for which there does not exist a Cayley triangulation of
K, 55 Let n be such that (3n,¢(3n)) = 1, where ¢ is the Euler function (the number
of positive integers less than n and coprime with n). We note that if (3n,¢(3n)) = 1,
then n is odd and not divisible by 3. We show that in this case there exists no
triangular Cayley map M = CM(T, X) of order 3n with underlying graph K, , .. In
the proof we use the following result of Burnside [2]: If (n, ¢(n)) = 1 then the cyclic
group Z, is the unique (up to isomorphism) group of order n.

Theorem 1: Let n > 1 be such that (3n,p(3n)) = 1. Then there does not exist a
Cayley triangulation of K, .

Proof: Assume to the contrary that there exists a Cayley triangulation M =
CM(T, X) whose underlying graph is isomorphic to K, ,,. By Burnside Theo-
rem, I' = Z3,. The number of elements of the generating sequence X for M is then
|X| = 2n. From Corollary 3 it follows that the generating sequence X has to contain
at least two consecutive pairs of the form (x,z7!) and every such x has to have order
3. But the group Zj, contains only two elements of order 3 (since 3 does not divide
n), a contradiction. O

Note that the condition (3n,(3n)) = 1 is satisfied e. g. for prime numbers n
such that n = —1 (mod 6). This gives:

Corollary 4: There does not exist a Cayley triangulation of K, ., if n is a prime
number of the form n = 6r — 1.

If we restrict ourselves to Cayley maps on cyclic groups, Theorem 1 combined
with Corollary 3 yields:

Corollary 5: A triangular Cayley map M = CM(Zs,, X) of Kynn can only exist
ifn=1 orif 3 divides n.

4 Regular Cayley triangulations

In Section 1 we stated that for each n there exists a unique regular triangular map
with underlying graph K, ., [5, 6]. We recall that regularity in this context means
that the automorphism group of the map acts regularly on flags. A construction of
the embedding is as follows [9]. We begin with an n-pole embedded in the 2-sphere.
Then we lift this n-pole with the help of a voltage assignment in the group Z, as
indicated in Figure 2.

We obtain an embedding M, of the complete bipartite graph K, , such that
every face of the embedding is a hamiltonian cycle of length 2n (see Figure 3).
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Figure 2: An n-pole and a voltage assignment in the group Z,

Figure 3: The embedding of K,

It is not hard to check that the orientation-preserving automorphism group of the
map is Aut™(M)) = {(a,bla®™ = b" = (ab)? = 1,ba® = a?b), where the generator a
corresponds to a counterclockwise rotation of M) about the centre of a face f by
the angle of 7/n and the generator b corresponds to a counterclockwise rotation of
M, about a vertex incident with the face f by the angle of 2m/n. Equivalently,
Autt(M!) = (A,B,C|A" = B = C* = 1,BA = AB,CA = AC,CB = A™'B7'(C),
where A = a?, B = b, C = ab, a = ABC. Therefore the orientation-preserving
automorphism group of M, is isomorphic to (Z,, X Z,)xZs.

Now, insert a new vertex in the centre of each face of the embedding and join
this vertex to every vertex on the boundary of the face as indicated in Figure 4.
We obtain a map M, which is a regular triangulation of K, ,,. The orientation-
preserving automorphism group Aut™(M,) of M, can be presented in the form

Autt(M,) = (A, B,C,D|A" = B" = C* = D3 = 1,BA = AB,
CA=AC,DA= BD,CB = A~'B~C, (2)
DB = A"'B~'D,CD = B~'D~'().

Here the generator A corresponds to a counterclockwise rotation of M, about the
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Figure 4: The embedding of K,

vertex z by the angle 27 /n, the generator B corresponds to a counterclockwise rota-
tion of M, about the vertex y by the angle 2w /n, C corresponds to a rotation of M,
about the vertex v by the angle 7w, and the generator D corresponds a counterclock-
wise rotation of M, about the vertex w by the angle 27 /3. Therefore Aut*(M,) is
isomorphic to the group ((Z, x Z,)xZ3)xZ,. Equivalently, the group may be writ-
ten in the form Aut*(M,) = (C,D|C? = D* = (CD)™ = (|C, D])® = id), where
[C,D] = C~'D7'CD is the commutator of the elements C' and D.

To determine for which n the map M, is a Cayley map we will use a theorem
which characterizes Cayley maps in terms of subgroups of the orientation-preserving
automorphism group of a given map [7].

Theorem 2: A map M is a Cayley map if and only if its orientation-preserving
automorphism group contains a subgroup that is reqular on vertices of M.

Because the graph K, ,, has 3n vertices, we want to look for subgroups of
Autt(M,) of order 3n acting regularly on vertices of M,. Any such subgroup ©
has to have the following two properties:

I) © is not a subgroup of (A, B,C) (that is, © contains an element of the form
ABIDIC™, | #0) and

II) © must not contain any element of the form (CD)!, B! = (CD)* and A!, [ # 0.
The requirement I) follows from the fact that the subgroup (A, B, C') is not transitive
on vertices of M,. As regards II), if z is an arc of M, then x and z(C' D) are incident
with the same vertex of M, violating the regularity of the action of ©. The same
applies to B'. Excluding A’ from © is based on the following four identities, valid
for each I € [n] = {0,1,...,n —1}:

1) A'BIDC - B' =A'BIDCBB'™' = AIBIDA™'B7'CB'"' = ...

= A'BIDA™'B7IC = A'B'B~'DB~'C = A'B'B~'A--UB-UDC

— AIBIAIDC = Al - A'BIDC. Similarly,
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2) Al- AIBID*C - Al = A'BD*C - B!,

3) AL~ A'B'D- Al = A'B'D - BT,

4) A'- A'BiD? = A'B'D*- B..

Therefore, if a subgroup © contains an element A’, [ # 0, then © has a non-trivial
vertex stabilizer.

Furthermore, if © is a subgroup of Aut*(M,) with the required properties, ele-
ments of © have to be from different cosets of Aut™(M,)\(CD). If this is the case,
O can be generated by an element from D(B~'D'C) = {A'B'D, A'B'C'} and by
another element from the set D*(B~'D~'C) = {A'D? A’DC}. We set
X, = (A'B'D) = {1, A'B'D, B'D*},

X, = (A'BC) = {1, A'BiC, A!, A%BiC, A% .. .},

Y, = (A/D? = {1, A’D? B=ID} and

Y, = (AIDC) = {1, AIDC, At Bitl ANHLIBITI DO, A2+2B2+2 ). Tt follows
that we must have © = (z,y) for some z from X; or X, and for some y from Y; or
Y>. We are now in position to prove the following result.

Theorem 3: The map M, is a Cayley map if and only if n =1,2,3 or if n is odd
and there is a k not dividing n such that k* +k+1=0 (mod n).

Proof: By the analysis preceding the statement of the theorem, it is sufficient to
investigate the existence of a subgroup © of order 3n of the group Aut*(M,) with
the presentation (2) such that © = (z,y) where z € X; U X, and y € Y1 UYs. We
will show that such a subgroup exists if and only if n < 3 or if n is odd and there is
a k such that (k,n)=1and K2+ k+1=0 (mod n).

We divide the argument into two main cases. In the first case we will have x € X3
and y € Y] and in the second case z € X; or y € 7.

Let z € X; and y € Y;. Then, A'B'D - AiID? = A'B™ and AID?. A'B'D =
AIB~%. The element A/B~% has to be from the group (A'B™*/); otherwise there
exists an element A' # 1 or B' # 1 in the group ©. Because A and B commute,
(A'B™)) = (ATB~%)'. Tt follows that AYBY+7* = AYB~" and hence i> 4 ij + j2 =
(mod n). We obtain a group © with elements:

17 Ai_Bi+j7 A21B2i+2j7 e AZB1D7 A2iBZi+jD’ 1432'B31+2j1)7 .

AID? A BHiD? A2 B?H2i D2 This group has order 3n if and only if 4 and
j are coprime to n. If n is even, then 4, j have to be odd, but then % +ij + j2 Z 0
(mod n). Furthermore, because (i,n) = 1 and (j,n) = 1, there exists a number
E such that (k,n) = 1 and j = ik (mod n). Therefore for such a k we have
K2+ k+1=0 (modn).

Now, let x ¢ X ory € Y;. We present a detailed proof for the case z € X,y € V5.
Proofs for the cases x € X,y € Y7 and © € X,,y € Y, are similar and in both
these cases we obtain as a result a group isomorphic to S3. So, let © = (z,y)
and let z € X,y € Y. If the element y is from the set Y5 and j # —1, the set
Y, contains an element A7T'Bitl. Because A'B' . A'B'D = A'B'‘D - B! for all
I € [n], the number j has to be equal to —1. This gives the sets X; = (A'B‘D)
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and Y> = (A7'DC). Moreover it is easy to show that (A™'DC - A'B'D)? = A1,
Therefore, if x € X, the number i has to be equal to 1. We thus obtain the group
© = (ABD,A™'DC) = {1,ABD,A™*DC, AD*C, AB2C, BD?*} of order 6 = 3 - 2.
Hence n = 2 and we have © = (ABD,ADC) = {1, ABD, ADC, AD*C, AC, BD?}.
This group is regular on vertices of M, so M, is a Cayley map (in fact, an octahedron).
O

5 Extendability of triangular Cayley maps

In this Section we will give constructions of infinite families of triangular Cayley
maps with underlying graphs K, ; .
Let M = CM(T,X) be a Cayley triangulation with the generating sequence
X = (®o,x1,...,%n-1). We say that CM(T[,X) is extendable if the generating
sequence X contains a consecutive pair (z,y) such that y = 27! = 2% and CM(I', X)
is r-eatendableif it contains at least » > 2 consecutive pairs. Equivalently, CM(T', X)
is extendable if there exists a face of type 2 at each vertex of the map, and it is r-
extendable if there are at least r faces of type 2 at each vertex of the map. Consecutive
pairs (z,y) such that y = 27! = 2 will be called consecutive pairs of insertion.
Now, let M = CM(T', X) be an extendable Cayley triangulation and let (zo,z;)
be a consecutive pair of insertion (recall that X is a cyclic sequence). Next, let
I =T x Z; and let X' consist of all elements of the form (z,), where z is in X and
i € {0,1,2}. We say that a sequence X' is an insertion extension of X if:
X' = ((20,0), (21,1), (29,2), (23,1), ..., (z2-1, 1),
(@0,2), (21,2), (29,1), (23,2), ..., (Ton-1,2),
(@0, 1), (21,0), (22,0), (x3,0), ..., (x2,-1,0)).

Lemma 1: Let M = CM(T',X) be an extendable Cayley triangulation. Further, let
M' = CM(I",X') be a Cayley map withT" =T x Z3 and with the generating sequence
X' which is an insertion extension of X. Then M' is a Cayley triangulation.

Proof: There are two kinds of consecutive pairs in X':

1) ((Io’j)7 (Ilv 1- J))v JE€ {0’ 1’2} and

2) (@i, 4), (wir1,—7)), 1 € {1,2,...2n — 1}, j € {0,1,2}. We need to show that in
the generating sequence X', the following pairs are consecutive:

i) ((231, 1 _j)717 (231, 1 _j)71 ’ (ﬂio,j)), J€ {07 172}

ii) (($07j)71 ’ (231, 1 _j)v (xO,j)71)7 JE {07 172}

i) (mig1, —3) 7% (g, —5) 7 (4,9)), 1 €{1,2,...2n — 1}, j € {0,1,2} and

) ((ws,5)7 - (i1, —39), (i, 5)7Y), i €{1,2,...2n — 1}, j € {0,1,2}.

We prove the case 1) and iii); proofs for cases ii) and iv) are similar. The calculations
are as follows:

Case ) ((z1,1 = ) (o1 — ) (w0, 4)) = (2,5 = 1), (@7",) — D(@o,)) =
(0,7 —1), (20,7 —1)(20, 7)) = (0,5 —1), (ﬂjg,j—l—Fj)) = ((z0,j—1),(21,2j-1)) =
((o,7 — 1), (z1,1 = (j — 1))); this later pair is easily seen to be in X

Case ﬁi): ((wiJrl’_j)_l’(wiJrl’_j)_l(xivj)) = ((wzjrllvj)’(xzjrllv-])(x“-])) =
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(w31, 9), (wri, 27)) = (@i, 4), (@, =),

Because M is a Cayley triangulation and there is a consecutive pair (z;, z;+1) in X,
the consecutive pair (2}, 27} 2;) is in X and therefore

(x4, 9), (#7t2i, —7)) is a consecutive pair in X'. O

Lemma 2: Let M = CM(T, X) be a 2-extendable Cayley triangulation. Further,
let M' = CM(I",X") be a Cayley map with I = T’ x Z3 and with the generating
sequence X' which is an insertion extension of X. Then M’ is 2-extendable.

Proof: Let X = (:c, z7t, ... y,y7Y,...). Then X' (an insertion extension of X) has
the following form

X' = ((z, )(I ) )7 o (v,2), (Y™ 1’1)""a
(2,2), (2~ 172)7 (1), (v~ 1’2)""a
(3071)7(75 10), ., (8,0),(y71,0),...) or
=((z,0),(z 1, 1),..., (1), (¥ 1, 2),-.,
(z,2),(z71,2),...,(5,2), (s, 1),
(z,1),(27,0),...,(y,0),(y7%,0),...).

—+
:3"
=

We see that in both ca
namely ((y,0),(y71,0)),
extendable. O

e are at least three consecutive pairs of insertion,
y~%,2)) and ((y,2),(y~',1)). Therefore M’ is 2-

n
@D

S €
y,1),

—~
—~
/-\

In the previous part of this section we presented a way to extend a Cayley trian-
gulation M to a Cayley triangulation M’ if M had some additional properties. Now
we show that there are Cayley triangulations of K, , , with such properties.

Theorem 4: Let I = Z, %73 = (a" = b® = 1|ba = a*b), where k* =1 (mod n)
and k* +k+1 =0 (mod n). Furthermore, let the generating sequence have the
form

X = (a'b, (™)1, att b, (IR p) 1 qit2p (@D )1 ) Then,

CM(T, X) is a 2-extendable Cayley triangulation of K, .

Proof: The proof is divided into two parts. In the first part we show that M is
a Cayley triangulation of K, ,, and in the second part we prove that the map is
2-extendable.

We begin by showing, that i) M is a Cayley triangulation and that ii) the underlying
graph of M is K .

i) We see, that if (z,y) = (a'b, (a®**b)~1),i € [n], is a consecutive pair of X then
(y_l,y_lx) _ ( z‘kQ’ (a k2+1)b)—1) _ ( ik27 (aikszb)—l) and (a:_ly,x_l) _
(a™"*+p (a'b)71) = (a (K +1)p, (a‘z(k2+1)" b)~1) are consecutive pairs of X. Simi-
larly, if (z,y) = ((a**b), Z“b), [n], is a consecutive pair of X, then (y~!,y~x)
and (z7ly,27!) are consecutive pairs of X. Therefore, by Proposition 2, M is a
triangular Cayley map.

ii) It is easy to see that A =T'\ X is a subgroup of index three of the group I'. By
Corollary 1, the underlying graph of M is K, ,,. Hence M is a triangular Cayley
map with underlying graph K, ,, .
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Now we prove that there are at least two consecutive pairs of insertion in the gener-
ating sequence X.

i) Let i = 0. We see that (b,b7!) is a consecutive pair of insertion.

ii) Let (k —1)/n and let i = ;";. Then (a’d)(a™’b)' = a'bbla ™ = o01-¥) =
a1 — =n(+k) = 1 and therefore @iy = (a;)7! for i = = It follows that
(a®-1, (aﬁkz)’l) is another consecutive pair of insertion X.

iii) Let n be not divisible by (k—1). Then the equation i(k—1)+1 =0 (mod n)hasa
solution for somei € {1,2,...n—1}. Let i be a solution of the equation i(k—1)+1 =0
(mod n). Then (a’b)~!(a™*+'b) = b~ta""a™* b = b~ta'*~V+1p = b='b = 1 and there-
fore @;y, = (2;)7* for i a solution of the equation i(k — 1) +1=0 (mod n). O

6 Conclusion

The main results of this paper are now obtained by summing up the facts obtained
in Sections 2, 3, 4 and 5.

Theorem 5: A triangular Cayley map with underlying graph K, ,, evists in the
following cases:

i)n=1,2,3,6 (Section 3),

i) n = 3"m where r > 0 and m > 1 is an odd number such that m|(k® + k + 1)
for some k, 1 < k <m (Theorem 4).

Further, a Cayley triangulatin of Ky, 15 reqular if and only if n = 1,2,3 or if
n is an odd number such that there exists a number k with properties (n, k) =1 and
E*+k+1=0 (modn) (Theorem 3).

On the other hand, there is no triangular Cayley map with underlying graph Ky n.n
if n is an odd number such that (3n,p(3n)) =1 (Theorem 1).

We conclude the paper with a remark. Let p be a prime number of the form
p = 6r + 1. By Fermat’s little theorem, the congruence a%" = (mod p) holds for
all integers a which are not multiples of p. In particular, (2*")> =1 (mod p) and it
is easy to see that 2> # 1 (mod p). Let k be the number between 1 and p which
satisfies the congruence & = 22" (mod p). Then we have k* =1 (mod p). Because
k*—1=(k—1)(k*+k+1) and (k — 1) is not a divisor of p, we have k2 +k+1=0
(mod p) and we obtain the following result.

Corollary 6: Let p be a prime number of the form p = 6r + 1. Then there exists a
regular triangular Cayley map of K, p,.
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