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Abstract

The concept of the chain condition was introduced by Wei and Yang
(IEEFE Trans. Inform. Theory, 39(5) (1991), 1709-1713) for binary linear
codes and later studied by many others for linear codes over finite fields
(see Encheva and Cohen, IEICE T. Fund. Electr. ES0A: 11 (1997), 2256~
2259, and Encheva, IEEE Trans. Inform. Theory 42(3) (1996), 1038-
1047, and the references therein). The chain condition is important in
applications as more can be said about the trellis description of codes
that satisfy the chain condition and the trellis description leads to simple
soft-decision decoding algorithm for the code. Thus the results on chain
condition are of interest in implementing the respective code. In a paper
(to appear in Des. Codes and Cryptogr.) by Gupta, Bhandari and Lal,
the concept of chain condition was investigated for codes over the ring
of integers modulo p® and it was shown that Z,-simplex codes of both
type (a and ) and the quaternary Reed-Muller code ZRM (1, m) satisty
the chain condition. In this note it is shown that various known self-dual
codes over Z, satisfy the chain condition. In particular we have shown
that all self-dual codes of length up to 9, Klemm codes and lifted Golay
code Q) Ry satisfy the chain condition. In this process we determine the
complete weight hierarchy of several codes over Z,.

1 Introduction

The concept of chain condition for codes over finite fields, especially binary and
ternary fields including their relationship to trellis description, soft-decision decoding
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and efficient coordinate ordering has been studied very well (see [7, 9] etc.). Recently,
codes over rings have increased in importance, generating much interest, for example
see [4, 6] etc. The concept of chain condition for linear codes over GF(q) was also
found useful in expressing weight hierarchies of a product code in terms of the weight
hierarchies of its component codes. In [4] this concept has been investigated for codes
over Zy. In this note, various classes of self-dual codes over Z, that satisfy the chain
condition have been identified. As it is difficult, in general, to show that a code over
Z4 satisty the chain condition (see, for example conjecture 1 ) we are unable to
consider more general classes of the codes.

A linear code C, of length n, over Z, is an additive subgroup of Zj. An
element of C is called a codeword of C and a generator matriz of C is a matrix whose
rows generate C. The Hamming weight wg(x) of a vector x in Zj is the number
of non-zero components. The Lee weight wy(x) of a vector & = (21, xa,...,2y) I8
>, min{|a;|, |[4—2;]}. The Euclidean weight wg(x) of a vector x is 17, min{az?, (4—
z;)?}. The Euclidean weight is useful in connection with lattice constructions. The
Hamming, Lee and Euclidean distances dy(x,y), di(x,y) and dg(x,y) between two
vectors x and y are wy (x —y), wi(z —y) and wg(z —y), respectively. The minimum
Hamming, Lee and Euclidean weights, dy,d, and dg, of C are the smallest Hamming,
Lee and Euclidean weights among all non-zero codewords of C, respectively.

A linear code C over Zj, is said to be a code of type a(f) if dy = [] (dy >
[Z1)[5]. The Gray map ¢ : Zj — Z3" is the coordinate-wise extension of the
function from Z, to Zj defined by 0 — (0,0),1 — (0,1),2 — (1,1) and 3 — (1,0).
Thus ¢(C), the image of a linear code C over Z4 of length n by the Gray map is a
binary code of length 2n.

The dual code C* of C is defined as {z € Z{ | z-y =0 for ally € C} where z -y
is the standard inner product of z and y. C is self-orthogonal if C C Ct and C is
self-dual if C = C*+.

Two codes are said to be equivalent if one can be obtained from the other by
permuting the coordinates and (if necessary) changing the signs of certain coordi-
nates. Codes differing by only a permutation of coordinates are called permutation-
equivalent.

In this paper we investigate the concept of chain condition for various type a and
[ codes over Z,. Section 2 contains some preliminaries and notations. Main results
are given in Section 3. Section 4 concludes with an important conjecture.

2 Preliminaries and Notations

Any linear code C over Z, is permutation-equivalent to a code with generator matrix
G of the form

I, A B, +2B,

(1) G=1y 21, 20
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where A, B, By and C are matrices with entries 0 or 1 and I, is the identity matrix
of order k. One can associate two binary linear codes with C viz. the residue code

CW={c (mod?2)|cecC}

and the torsion code
C? ={cezZ}|2ceC}.

A vector v is a 2-linear combination of the vectors vi,vs,..., vy if v.= A\jvy +
coo Apvp with \; € Zy for 1 <4 < k. A subset S = {v1,va,...,vi} of C is called a
2-basis for C if for each i = 1,2,...,k—1, 2v; is a 2—linear combination of v 1, ..., Vg,
2vy, = 0, C is the 2-linear span of S and S is 2-linearly independent [5]. The number
of elements in a 2-basis for C is called the 2-dimension of C. It is easy to verify that
the rows of the matrix

Ly, A B +2B
(2) B=|2L, 24 2B
0 2L, 2C

form a 2-basis for the code C generated by G given in (1).

A linear code C over Z4 ( over Z) of length n, 2-dimension &, minimum Ham-
ming distance dg and minimum Lee distance dy, is called an [n, k,dg,dL] ([n, k, dg])
or simply an [n, k] code. For 1 < r <k, the r-th Generalized Hamming weight of C
is defined by

d,(C) = min{wg(D,) | D, is an [n,r] subcode of C},

where wg (D), called support size of D, is the number of coordinates in which some
codeword of D has a nonzero entry. The set {dy(C),ds(C),...,dy(C)} is called the
weight hierarchy of C. C is said to satisfy the chain condition if there exists a chain

D, C Dy C---C Dy,

of subcodes of C satistying ws(D,) =d,(C), 1 <r < k.
A relation between d,(C) and d,(C*) is given by the following theorem.

Theorem 1 ([1]) Let C be an [n, k] linear code over Zs. Then

{d,(C):1<r<k}={1,1,2,2,...,n,n}\{n+1—-d,(C*): 1 <r <2n—k}.

3 Self-Dual and Self-Orthogonal Codes

Self-dual and self-orthogonal codes over Z, were recently studied by several re-
searchers like Bonnecaze, Conway, Harada, Pless, Quian, Rains and Sloane etc. (see
[2, 10, 11] etc.). They have been classified by Conway and Sloane up to lengths 9
in [2]. At length n = 1 the smallest self-dual code A; = {0,2} trivially satisfies the
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chain condition. Also for each length n we have the trivial self-dual codes over Z,
with generator matrix G = [2I,]. These codes satisfy the chain condition as they
are direct sum of n copies of A;. Any code having 4; as a direct summand is called
trivially decomposable. Let C be a linear code over Z4. A codeword ¢ € C is said to
be a tetrad if it has exactly four coordinates congruent to 1 or 3 (mod 4) and the
rest congruent to 0 (mod 4).

Let m > 2 be a positive integer. Let Dy, be the [2m,2m — 2,4,4] type 5 code
generated by the (m — 1) X 2m matrix

111300 --00000

0061113 --000U0FO

(3) A
Ooo0o000O0--011T13

and let DY,, be the [2m, 2m — 1] code generated by Da, and the tetrad 1300 ...0011.

Equivalently D9, is generated by the matrix (see [2])

111300=--000U00
001113 ---00WO0O0TO
(4) A T A A
0000O0O0O¢ «--011T13
202020 --020220

Let Dj, be the [2m,2m — 1] code generated by Dsy,, and 00...0022 and let DY, be
the code generated by D9, and Ds,,. Note that D is a [2m, 2m] self-dual code([2]).

Let & be the [7,6,4,4] type 8 code generated by the matrix
1003110
(5) 1010031
110100 3

and let £F be the [7,7,4,4] type B code generated by & and 2222222. It was observed
in [2] that & is a self-dual code and the reduction code of both & and &7 is the
Hamming code of length 7. They also show that the code & generated by the matrix

10000111
01003013
(6) 001033601
00013130

is a [8,8,4,4] self dual code. Note that it is a type § code.

In [2] Conway and Sloane have shown that any self-orthogonal code over Z,
generated by ‘tetrads’is equivalent to a direct sum of codes Dy, DY, Dy, D (m =

1,2,...),&, EF, E. The following Theorem shows that Dy, £7,EF and Eg satisfy the
chain condition.
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Theorem 2 D,,,, Er, EF and Es satisfy the chain conditions.

Proof. It is easy to verify that the weight hierarchy of &; is {4, 4,6,6,7,7}. Con-
sider the codewords x; = (1101003),x, = (2111030) and x5 = (3023132) of &;. Let
D1 =<< 2X1 >, .D2 =<< X1,2X1 >, D3 =<< X172X1,2X2 >, D4 =<< X1,2X1,X2,2X2 >,
Dy =< x1,2X1,Xs,2Xy,2x3 >, and Dg =< X1, 2X1,Xs, 2Xs, X3, 2X3 > . It is easy to
verify that D; C D, ... C Dg is the required chain of subcodes.

Therefore for & the required chain of subcodes can be taken as Dy C D,... C
Dg C D; where D; for 1 < i < 6 are the subcodes defined for £; and
D7 =< x1,2X, X2, 2X9, X3, 2X3,2222222 > . Hence & satisfies the chain condition
and its weight hierarchy is {4,4,6,6,7,7,8}. Clearly, the weight hierarchy of & is
{4,4,6,6,7,7,8,8}. If R;(1 < i < 4) denote the first four rows of the matrix given
in (6) and if D; =< 2Ry >, Dy =< R4,2Ry >, D3 =< 2R3, R4,2R4 >, Dy =
< R3,2R3,R4,2R4 >,..., Ds =< R{,2R,...,R3,2R3,R4,2R, > then D; C D,...
C Dg and wy(D,) = d.(&s).

It is easy to see that the code D,,, has weight hierarchy
{4,4,6,6,8,8,...,2m —2,2m —2,2m,2m}. Let Ry,... R;,_1 be the first m — 1 rows
of the matrix given in (3) and let D; =< 2Ry >, Dy =< R1,2R; >, ...,

Dyp3 =< R1,2Ry,...,Rp_2,2R,,_2,2R,,_1 >,
Dypg =< Rl, 2R1, ey Rm_27 2Rm_2, Rm—la 2R,_1 > . Then Dy CDsy...C Dyyy_s
and wy(D,) = dy(Dam),1 <7 < 2m — 2. O

At length n = 4 there is a type a code DY : [4,4,2, 4] generated by the matrix

11 1
2 2 0
20 0

N O

and at length n = 6 we have D : [6,6,2,4] type o code generated by the matrix

111010

110101

220000

202200
D .

Finally at length n = 8 we have D§’ : [8,8,2,4] type a code generated by the matrix

11100100
11010210
11001221
22000000
20222000

Theorem 3 D§, D, DF ¢ D, D§ satisfy the chain condition.
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Proof. The weight hierarchies of all the codes are given in the Table 1. It is
straightforward to find the possible subcodes of the first three codes. We give the sub-
codes of DP. If R;, 1 < i < 5 denote the first 5 rows then the subcodes are given by
Dy =< Ry >, Dy =< 2Ry, R4 >, D3 =< Ry,2Ry, Ry >, Dy =< 2Ry, R1,2R,, Ry >,
Dy =< Rz, 2R2,R1,2R1, Ry >, Dg =< R5,R2,2R2, Rl, 2R1,R4 >, D =< 2f337 R57
Ry,2Ry, R1,2R;, Ry >, and Dg =< R3,2R3, R5, R2,2Rs, R1,2R,, Ry >. Then D; C

D, ... C Dg and ws(D,) = d,(QRs),1 <r <8. ]
Table 1
Code Weight hierarchy Code  Weight hierarchy
D? {273’4’4} ’D?@’D? {273747 4767 77878}
Dy {2,4,5,5,6,6} DY {2,4,4,6,6,7,8,8}

There is another self-dual code Lg of length 8 defined in [2]. Lg is [8,8,2,4] type
a code generated by the matrix

00 11 02 13
00 02 13 11
(7) 11 02 00 13
02 02 02 02
00 00 00 22

Proposition 1 Ly satisfies the chain condition.

Proof. It is easy to see that the weight hierarchy of Lg is {2,4,5,6,7,7,8,8}.
Let x; = (00000022),x, = (11020013),x3 = (13000211),x4 = (02001131) and
x5 = (13021122) be the five codewords of Lg. Let Dy =< x; >, Dy =< 214,x; >
s Dy =< x2,2x9,%x1 >, Dy =< X3,X9,2Xg, X1 >, Dy =< 2x4,X3,X2,2X%2, X1 >,
D =< X4,2X4,X3,X272X2,X1 >, D; =< 2X5,X4,2X4,X3,X2,2X2,X1 >, and Dy =<
X3, 2X5, X4, 2X4, X3, X2, 2X2,X; > . Then Dy C D, ... C Dg and wy(D,) = d.(Lg), 1 <
r < 8. O

Let m > 1. Let K4, be the [4m,4m, 2,4] type o code generated by the (4m —
1) x 4m matrix

111 11
020 - 0 2
00 2 - 0 2

(8)
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and let Ky be the [8,8,2,4] type a code generated by the matrix

1111000 2
00021111
() 02020000
00220000
000O0O0Z2¢0 2
000O0O0O02 2

Both of these self dual codes can also be obtained from a labelled graph [2].

Theorem 4 The Klemm Code Kay(m > 1) and the code Ky satisfy the chain con-
dition and the weight hierarchy of Ky is given by

(10) ki) = {

r+1, 1<r<4m-—2,
dm, r=4m —1 ordm.

Proof. It is easy to see that the weight hierarchy of the Klemm code is given
by (10). Let R;(1 < i < 4m —1) be the first 4m — 1 rows of (8). For 1 < r < 4m — 2,
let D, =< Ryp—i : 1 < i <r > alsolet Dy,—1 =< 2Ry, Ry, R3,- -, Raym_2, Ragn_1 >,
D4m =< R17 2R17 Rz, R37 T ,R4m,2,R4m,1 > . Then Dl g Dz PN g D4m and
ws(Dy) = dp(Kam),1 < 7 < 4m. For the code Ky it can be easily checked that
its weight hierarchy is {2,3,4,5,6,7,8,8}. Let x; = (00000022),x5 = (00000202),
x3 = (00021111),x4 = (00201111),x5 = (02001111),x¢ = (20001111) and x; =
(20001133) be the seven codewords of Kg. Then D) =< x; >, Dy =< X3,X; >, D3 =
< 2X3,X2,X1 >, D, =< X3,2X37X27X1 >, Dy =< X4,X3,2X3,X2,X1 >, Dy =
< X5,X4, X3, 2X3, Xy, X1 >, Dy =< Xg¢, X5, X4, X3, 2X3, X2, X1 > and Dg =< X7, Xg, X5,
X4, X3, 2X3, X3, X1 > form the required chain of subcodes. a

Some of the self-dual Z,4-codes have the property that all Euclidean weights are
multiple of 8 and they contain the all-one vector. These codes are called Type-II codes
over Zs ([2]). The key motivation to study these codes is that one can associate a
Type-II even unimodular lattice via the construction A (mod 4) [13].

3.1 Quadratic Residue Codes QR,

The Quadratic residue codes over Z4 form a well known family of Type-II codes.
These codes are obtained by the Hensel uplifting of the binary quadratic residue
codes [12]. If n = g+1and ¢ = —1 (mod 8) is a prime power then Pless and Quian
have shown that an extended quadratic residue code QR, of length n is a Type II
code. These have been widely studied by Pless et al for n = 8,24, 32,48 etc. [12].
@Ry is the well known Octacode generated by the matrix

33 2 3 00

0

3 1

(11) 3 3
3 2

o O o
W N W

3 2 0
0 3 1
00 3

= O O
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It is an [8,8,4,6] code of type . The code QRa4 is the well known lifted Golay
Code. 1t is a [24,24,8,12] code of type [ generated by the matrix

,\

—

[\)

~
LW wWwWwWwowowawowaww
COoOOoOCOoCOoOOCcOoOOCcOoOOoO W
COO0OQCOWHOONWWW
COoOOWHOONWWWO
COWHOON WWWOoOW
OCWHOONWWWOWN
W OONWWWO WK -
HOONWWWOWNF~O
WWOWNHOOO OO O
WO WNHOOOO OO O
WM OOOOOOOCO
WNHOOOOOO OO O
N OO0 OO O
—FO OO0 QOCOoOOoOOOCOOCO

COO0OQCOCOOOOCO W
OO0 OO WH O
COoOO0OQCOCOoOOoOOoOWrK OO
COO0OQCOCOoOO WHHOON
OO0 OCOWHHOON W
COO0OQCOWHOONWW
CONWWWOoO WN OO
ONWWWOWNFOO O
NWWwWwoOwWN OO OO
WWwWwownm—HOOOOO

The following theorem shows that these codes satisfy the chain condition.

Theorem 5 FExtended quadratic residue codes QRg and QRyy over Zg satisfy the
chain condition.

Proof. It is easy to see that the weight hierarchy of the Octacode is
{4,5,6,6,7,7,8,8} (see also [1]). Let R;;1 < i < 4, be the last four rows of the
matrix (11) Let Dl =< 2R1 >, D2 =< R1,2R1 >, D3 =< 2R2,R1,2R1 >, D4 =
< R2,2R2,R1,2R1 >, Dy =< 2R3,R2,2R2,R1,2R1 >, Dg =< R3,2R3,R2,2R2,R1,
2R, >, D; =< 2R4,R3,2R3,R2,2R2,R1,2R1 >, and Dy =< R4,2R4,R3,2R3,R2,
2Ry, R1,2R; > . Then it is easy to verify that D; C Dy... C Dg and ws(D,) =
d,(QRs),1 < r < 8. It can be seen easily that
{8,10,12,13,14,15,16,16,17,17,18,18,19, 19, 20, 20, 21, 21,22, 22,23, 23, 24, 24}
is the weight hierarchy of QRss. Let R;, 1 < ¢ < 12 be the first 12 rows of (12).
Let Dy =< 2R3 >, Dy =< Ry19,2R15 >, D3 =< Ri19,2R19,2R11 >,..., Dy =<
R17 2R1, . .,R12,2R12 > . Then Dl g D2 e Q D24 and ws(DT) = dT(QR24), 1 S T S
24. O

In [5] the authors have shown that Z4-simplex codes S and Sf satisfy the chain
condition. The following theorem shows that their dual codes also satisfy the chain
condition.

Theorem 6 The Z, Hamming codes of both types satisfy the chain condition.

Proof. We prove it for Sfl as the proof for the other Hamming code is similar.
By Theorem 1 (see also [5]) the weight hierarchy of S7 s given by

{dT(SfL)} — {1,1,2,2, . mn}\ {14 (20 =20 ) [0 < < 28],

1<r<2% 2k _9of.
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Let H be the standard parity check matrix of S¢ (see [5]) and let R; be the last

22k=1 _ 9k=1 _ I = pn — k rows of H. Then it is easy to see that the required sub-
L .

codes of S,f are given by D; =< 2R,y >, Dy =< 2Ry, Ryt >, ..., Dop_ap, =<

2Rk, Ry, ..., 2Ry, Ry >. O

4 Conclusion and Further Work

In this article we have shown that all self-dual codes of length up to 9 satisty the chain
condition. This includes all indecomposable codes: A, DY, D¢, &7, DY, &, Ks, K,
Octacode QRg and Lg and all decomposable codes: DF @ DF. All trivial codes
of length n satisfy the chain condition. Thus our study is complete up to length
9 for codes classified in [2]. We have shown that the class of codes Dsy,,, (m =
1,2,...), Klemm Code Kyn(m > 1) and Lifted Golay Code QR4 also satisty the
chain condition. It is clear from our proof techniques that showing a code satisfy the
chain condition is a difficult problem. It would be interesting to come up with an
algorithm to decide whether a given code satisfy the chain condition ? However, at
present we do not know any such algorithm. Also, it would be interesting to extend
our results to other self-dual codes in the classification of [10, 11] and to show that
some other general classes of codes satisfy the chain condition. The following result
could be helpful in this direction which is obtained in view of Theorem 6.

Conjecture 1 If C satisfies the chain condition so does its dual C*.
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