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Abstract

Let D be a digraph. We denote by L(D), M (D), M'(D) and T(D) the
line digraph, the middle digraph, the special middle digraph and the to-
tal digraph of D, by k(D), p(D) and Diam(D) the index of convergence,
the period and the diameter of D, respectively. Zuo (in Acta. Mathe-
matica Applicatae Sinica, 21(1) (1998), 144-147) proved that k(D) —1 <
E(L(D)) < k(D) + 1. In this paper, we prove that:

. max{k(M(D)),k(M'(D)),k(T(D))+ 1} < max{2p(D), 2k(D) + 2}.

2. K(T(D)) < k(M(D)) < K(T(D)) + I;
R(T(D)) < k(M'(D)) < K(T(D)) + 1.

[y

3. If there do not exist both sources and sinks in D, then
k(M(D)) < k(M'(D)) < k(M(D)) + 1.

4. If D is a strongly connected digraph, then
min{k(M (D)), k(M'(D)) = L,k(T(D))} > Diam(D) + 1.

5. If D is a primitive digraph, then
masx{k(M (D)), k(M'(D)) — L k(T(D))} < k(D) + 1.

* This work is supported by NSFC(10371102), FMSTF(2004J024) and FJECF(JA03131)
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1 Introduction

Throughout this paper, let D be a digraph with the vertex-set V(D) = {v1,v2, ..., Vs }
and the arc-set A(D) = {1, a2, ...,2,}. Digraphs in this paper will be allowed to
have loops but not multiple arcs (arcs of the form (v;,v;) and (v;,v;) are allowed).
Let C), denote a directed cycle of length n. The directed cycle of length 1 is a loop.
A source is a vertex with in-valency 0, and a sink is a vertex with out-valency 0.
We suppose that the operations of matrices in this paper are Boolean operations.
We use Hemminger and Beineke [1] for terminologies and notations not defined here.

In 1960, Harary and Norman [2] introduced the concept of the line digraph. For
a digraph D, the line digraph, denoted by L(D), has as its vertex-set the arc-set
of D, (a,b) is an arc of L(D) if and only if there are vertices u,v and w in D with
a = (u,v) and b = (v, w). Line digraphs have been discussed in [1-8].

In 1966, Chartrand [9] introduced the concept of the total digraph. for a digraph
D, the total digraph, denoted by T'(D), has its vertex-set V(T'(D)) = V(D)UA(D),
there is an arc (a,b) € A(T(D)) from vertex a to vertex bin V(T (D)) if and only if one
of the following four cases holds: 1. If a € V(D) and b € V(D), then (a,b) € A(D).
2. Ifa € V(D) and b € A(D), then a is the tail of arc b in D. 3. If a € A(D) and
b € V(D), then b is the head of arc a in D. 4. If a € A(D) and b € A(D), then the
head of arc a in D is the tail of arc b in D. The total digraph has been discussed in
[9-11].

In 1977, Zamfirescu [10] introduced the concept of the middle digraph. For a
digraph D, the middle digraph, denoted by M (D), has its vertex-set V(M (D)) =
V(D)UA(D), there is an arc (a,b) € A(M(D)) from vertex a to vertex b in V(M (D))
if and only if one of the following three cases holds: 1. If a € V(D) and b € A(D),
then a is the tail of arc bin D. 2. If a € A(D) and b € V(D), then b is the head of
arc ¢ in D. 3. If a € A(D) and b € A(D), then the head of arc a in D is the tail of
arc bin D. The middle digraph has been discussed in [10,11].

Similarly, we can define the special middle digraph of D as follows.

Definition 1.1 For a digraph D, the special middle digraph, denoted by M'(D),
has its vertex V(M'(D)) = V(D) U A(D). there is an arc (a,b) € A(M'(D)) from
vertex a to vertex bin V(M'(D)) if and only if one of the following three cases holds:
1. If a € V(D) and b € V(D), then (a,b) € A(D). 2. If a € V(D) and b € A(D),
then a is the tail of arc bin D. 3. If a € A(D) and b € V(D), then b is the head of
arc a in D.

Suppose that A is the adjacency matrix of D, whose entries are 0 or 1. Then the
index of convergence and the period of D equal the index of convergence and the
period of Boolean matrix A, respectively, defined as follows (see [12-14]):

Suppose that A is a Boolean matrix. Its Boolean sequence of powers is denoted
by (A%) =1,A,A2,... A* .... The index of convergence (say k(A)) and the period
(say p(A)) of A are the least non-negative integer & and the least positive integer
p such that A¥ = AP respectively. By this definition, the Boolean sequence of
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powers of A is as follows:
(A7) =1,A, A% AR=L AR ARTPEL AR ARl
where A" # AJ if max(i,j) < k+ p and i#j.
It is well known [12-14] that the digraph D is primitive if and only if D is strongly

connected and the greatest common divisor of the lengths of all (elementary) directed
cycles of D is 1.

In paper [7], Zuo considered relations between k(D) and k(L(D)) and between
p(D) and p(L(D)), and obtained the following proposition.
Proposition 1.2 [7] Let D be a digraph; then:
1. p(L(D)) = p(D).
2. k(D) — 1<k(L(D))<k(D) + 1.
3. If D is a primitive digraph, then k(L(D)) = k(D) + 1.
4. kE(L(D)) = k(D) — 1 = [ if there exist no directed cycles in D, where [ is the
length of the longest directed path in D.

The above results have been proved by Zhou [15] by using a simpler method—
algebraic method. In particular, by using the algebraic method, Yan and Zhang [8]
obtained a stronger result than that of Proposition 1.1 as follows: If a digraph D
has no sources or sinks, then k(D) < k(L(D)) < k(D) + 1. Moreover, if D has no
sources and no sinks, then k(L(D)) = k(D) + 1 if there is at least one connected
component of D which is not a directed cycle, and k(L(D)) = k(D) = 0 if every
connected component of D is a directed cycle.

The following results are useful.

Proposition 1.3 [12] Let D be a digraph.
1. If D is strongly connected, then: (1). p(D) equals the greatest common divisor of
lengths of all directed cycles of D. (2). Diam(L(D)) = Diam(D) + 1 unless D is a
directed cycle, where Diam(D) denotes the diameter of D.
2. If D is weakly connected, then p(D) equals the least common multiple of the
periods of strongly connected components of D.
3. If Di(1 < i < c¢) are all of weakly connected components of D, then k(D) =
max‘_, (k(D;)), and p(D) equals the least common multiple of p(D;),p(Ds), ..., and
p(De).

The following propositions are due to Hemminger and Beineke [1] and Lin and
Zhang [4-6], respectively.
Proposition 1.4 [1] Suppose that D is a digraph with no isolated vertices. Then
(1). L(D) is strongly connected if and only if D is strongly connected.
(2). L(D) is a directed cycle if and only if D is a directed cycle.
Proposition 1.5 [4-6] Let D be a digraph, with vertex-set V(D) = {v1,v2,...,v,},
and arc-set A(D) = {z1,22,...,Zm}, Bo and B; be the following two n x m matrices:
By = (b%;), By = (bj;), respectively, where

- 1 if v; is the tail of arc ; in D;
W71 0 otherwise.
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plo— 1 if v; is the head of arc x; in D;
W7 ] 0 otherwise.

A Bg
BIT AL
adjacency matrices of D, L(D) and T(D), respectively, and BT denotes the transpose
of B;.

Definition 1.6 [4,12] We say that By and B; in Proposition 1.5 are the out-
incidence matrix and the in-incidence matrix of D, respectively.

Then A = ByB],A;, = BBy, Ar = ), where A, Ay and Az are the

2 Some lemmas

Similarly to Proposition 1.5, we can prove the following lemma.

Lemma 2.1 Let D be a digraph with n vertices and m arcs and let Ay, and Ay
be the adjacency matrices of M (D) and M'(D), respectively. Then

_( 0. B (A B
AM_(BIT AL>’ AM'_<BIT O

where 0, is the n x n matrix with all entries equal zero, and By and B; are the
out-incidence matrix and the in-incidence matrix of D, respectively.

Lemma 2.2 Let D be a digraph. Then
1. A¥ = BT A¥=1By, A¥ = BoA¥ BT for k > 1.
2. If kis odd (k > 1), then

i Akil—i—Ak*z—i—---—i—A% (Ak—l_,’_Ak—Q_'_._._i_A%)BO
= - k1 )

M B{(Ak71+Ak72+"'+AIC271) Ali+Al£71+"‘+AL2

If  is even (k > 2), then

P Ak—1+Ak—2+“‘+A§ (Ak—1+Ak—2+.‘.+A§)BO
M_<BIT(A"“1+A’“‘2+---+A§) A’2+A§‘1+---+A§ )
Proof By Proposition 1.5, the first assertion can be easily proved.

We prove the second assertion by induction on k.

When k£ =2 or 3,
A2 A AB,
M BTA A*+ AL )

AS _ A AZ _ On BO A ABO o A2 (A2 + A)Bo

MTEMEM T\ BT AL )\ BTA A2+ Ap )] \ BI(A*+A) A3 +A2 |-
Hence, when k = 2 or 3, the second assertion holds. We assume the second assertion
holds for k. First, we suppose that %k is odd. Then

) ( A1 AR 44 AR (Ak_1+Ak_2+"'+A%)Bo)
— k+1 .

M7\ BT(ART 4 AR2 44 AR Ab AR A
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By the first assertion, then

k+1

k+1
BU(A}IC/+AI£71+"‘+AL%):(Ak—i—Ak*l_}_..._i_AT)BO'

Hence, we have
k41 _ ko
AsFr = Ay Ay =
k+1

<0n BO)( ARt AR2 o A (Ak1+Ak2+...+Ak§1)BO>

B? A BTAk71+Ak—2+“‘+A% Ak_'_Akfl_i_.“_'_Ak%l
1 L L L

k+1 ===

Ak g AR 4 AR (AR AR ATTB,
B (A* + AF 4 AT) AP AL+ AP .

Similarly, we can prove that when k is even the second assertion holds. Hence our
proof follows.

Similarly, we can prove the following two lemmas.

Lemma 2.3 Let D be a digraph. Then
1. If kis odd (k > 1), then

k+1

Ak _ Ak+Ak72++AT (Ak71+Ak72++A% -BO .

M\ BT(ARY 4 A2 4o 4 A AR AR 2 42 ’
2. If k is even (k > 2), then

A AF 4 AR-2 44 oA (A1 4 AF2 4.y ABB,
1 = ® .
M BlT‘(Ak—1+Ak—2+.‘.+A§) AII”;71+A’£72+~-~+AE

Lemma 2.4 Let D be a digraph. Then
1. If kis odd (k > 1), then

Ak Ak—f—Ak_l—&----—f—A% (Ak—1+Ak—2+___+A’°2;1)BO
= _ k11 )
T BIT(Ak_l—FAk_Z-f—"'-FA%) A1£+A1£_1+---+AL2

2. If k is even (k > 2), then

T =

R Ak 4 AR f g oA (Akfl_'_Ak—Z_i_._._'_A%)BO
_ X '
BI(AM1 4 A2 o+ A5) Ab 4 AL 4.4 A2

Lemma 2.4 was proved by Yan and Zhang [16] and You and Liu et al. [17]. The
following lemma is obvious.

Lemma 2.5 Suppose that there do not exist directed cycles in D. Then

1. p(M(D)) = p(M'(D)) = p(T(D)) = 1.

2. If we denote by (D) the length of the longest directed path of D, then {(M (D)) =
I(M'(D)) = T(D)) = 2(D).
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Partial results on T'(D) in Lemma 2.5 were proved by Yan and Zhang [16] and
You and Liu et al. [17].
Lemma 2.6 Let D be a strongly connected digraph. Then all of M (D), M'(D) and
T(D) are primitive digraphs.
Proof By the definition of M(D), it is obvious that M (D) is strongly connected.
Note that there exists at least a directed cycle in D. If we denote by [ the length
of this directed cycle. Then there at least exist two directed cycles in M(D) whose
lengths are { and [ + 1, respectively. By Proposition 1.3, then p(M (D)) = 1. Hence
M (D) is a primitive digraph. Similarly, we can prove that both of M'(D) and T'(D)
are primitive digraphs. Thus our proof follows.
Corollary 2.7 Let D be a digraph. Then p(M (D)) = p(M'(D)) = p(T(D)) = 1.
Proof If there are not directed cycles in D, then, by Lemma 2.5, p(M(D)) =
p(M'(D)) = p(T(D)) = 1. If there is at least a directed cycle in D, denoted by [
its length, then there at least exist two directed cycles in M (D) (M'(D) and T(D))
whose lengths are [ and [ + 1, respectively. we distinguish the following three cases:
Case 1 Let D be a strongly connected digraph.

By Lemma 2.6, all of M (D), M'(D), and T(D) are primitive digraphs, Hence
p(M(D)) = p(M'(D)) = p(T(D)) = 1.
Case 2 Let D be a weakly connected digraph.

It is easy to see that M (D) (M'(D) and T(D)) is weakly connected. By Case 1
and Proposition 1.3, then p(M(D)) = p(M'(D)) = p(T(D)) = 1.
Case 3 Let D;(1 <i < ¢) be all of weakly connected components of D.

By Case 2 and Lemma 2.5, then p(M(D;)) = p(M'(D;)) = p(T(D;)) = 1. Hence
p(M(D)) = p(M'(D)) = p(T(D)) = 1.

Thus we have completed the proof of Corollary 2.7.

Partial results on T'(D) in Lemma 2.6 and Corollary 2.7 were proved by Yan and
Zhang [16] and You and Liu et al. [17].

Lemma 2.8 Let D be a digraph with no sources, and let C; and Cy be two n X n
matrices whose entries are 0 or 1. If BIC, = BIC,, then C; = Cy, where B is the
in-incidence matrix of D.

Proof Let C) = (¢j;) and Oy = (c};). We need to prove that cj; = ¢f; for 1 < 4,5 < n.
By the definition of By, for vertex v; of D, then there is an arc x,, in D such that v;
is the head of arc z,,. Hence b},, = 1. So the mj—entry (BfC})n; of matrix B C;
equals Y3, bg,chj = bin,Clj = cij, since there only exists one entry b}, which is not
zero in the m — th column of B;. Similarly, the mj—entry (B Cy),,; of matrix B Cy
equals ¢};. Noting that Bf Cy = B Cs, hence ¢}; = ¢};. This shows that C; = Cs.
Our proof thus follows.

Lemma 2.9 Let D be a digraph, k& = k(D) and p = p(D). Then Y!_ A’ =
AR AR o ARPL for s > kand t > s+ p— 1.

By the definitions of k(D) and p(D), this is clear.
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3 Main results

Theorem 3.1 Let D be a digraph. Then

1. k(M(D)) < max{2p(D),2k(D) + 2}.

2. k(M'(D)) < max{2p(D),2k(D) + 2}.

3. k(T(D)) < max{2p(D) — 1,2k(D) + 1}.

Proof First, we prove that k(M(D)) < max{2p(D),2k(D) + 2}.
Let k = k(D),p = p(D). We distinguish the following two cases:

Case 1 If 2p(D) > 2k(D) + 2, then p > k + 1. By Corollary 2.7, we only need to
prove that A3 = A%*'. By Lemma 2.2,

g AL A2 L AP (A2p—1 4+ AZP—2 4.4 AP)B, '
T\ BT(AP L4 A2 4 ... 4 AP) A AT AP '

BT (A% 4 A%=1 o Ap) ATPTL L A% g APt
Noting that p > £+ 1, by Lemma 2.9, then

A2p+1 ( A2p+A2p—1 + . Ap+1 (A2p+A2p—1 +"'+AP)BO )

APl AP AP = AR AR g AR
Similarly, we have
A AL APHL gk g gRL gkl
Hence
AL A7 AP A% ATl AP
By Proposition 1.2, k(L(D)) < k(D) + 1. Similarly, we can prove that
(A7 4 APP72 o 4 AP)By = (A + A ... 4 AP)By;
BI(AP™1 4 A2 4. 1 AP) = BY (A% + A7 ... 4 AP);
AP+ AP o AL = AP AP 4+ AT
Hence A3 = A3, This shows that k(M(D)) < 2p = max{2p, 2k + 2}.

Case 2 If 2p(D) < 2k(D) + 2, then p < k+ 1. By Lemma 2.9, we only need to
prove that A2¥? = A2k+3 By Lemma 2.2, we have

22 A2k+1 +A2k +Ak+1 (A2k+1 +A2k +. +Ak+1)BO
Ay BT(A2k+1 +A2k +Ak+1) A2Lk+2 A2k+1 Ak+1 ;

A2k+3 A2k+2+A2k+l + - +Ak+2 (A2k+2 +A2k+1 —+ - +Ak+1)
BT(A2k+2 +A2k+1 + - Ak+1) A%IH—S A2k+2 Ak+2

Similarly to the proof of Case 1, we can see that

A2k+1 +A2k +Ak+1 A2k+2 +A2k+1 i +Ak+2;
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(A2k+1 + A2k RS Ak+1)B0 — (A2k+2 A2k+1 A/Hrl)
B?(A2k+l A2k . Ak+1) — BT(AZkJrZ A2k+1 AkJrl)
A2k+2 A2k+1 Ak+1 A2k+3 A2k+2 Ak+2

Hence A2¥T? = A2M+3 This shows that k(M(D)) < 2k + 2 = max{2p, 2k + 2}.

Combining Case 1 and Case 2, we have
k(M(D)) < max{2p(D),2k(D) + 2}.

Similarly, we can prove assertions 2 and 3.
The third assertion in Theorem 3.1 was proved by Yan and Zhang [15].

Remark 1 Let D, = (V(D,), A(Dy)), V(D) = {1,2,3},and A(D;) = {(1,2),(2,1),
(2,3),(3,2)}. Then p(D;) =2, k(D;) =1, k(M(D,)) = k(M'(Dy)) =4, k(T(D )) =
3. This example shows that the upper bounds in Theorem 3.1 are obtained.

Theorem 3.2 Let D be a primitive digraph; then
K(M(D)) < k(D) + L, k(M'(D)) < k(D) +2,k(T(D)) < k(D) + 1.

Proof Let k(D) = k, J, be the n x n matrix with all entries equal one. Then
Ak = J.. By Proposmon 1.2, Abt — . If k is odd, then
Akt _ Ak+Ak—1+---+A’°T*: (AF 4+ A1 4 ... 4+ A B, '
BY(AF 4 A1 AT AR LAk A
Noting that J,By = Jum, BlTJn = Jmn, where J,,, and J,,, denote the n x m
matrix with all entries equal one and the m X n matrix with all entries equal one,
respectively. Hence A% = J,.,,. Similarly, if k is even then A% = J, ... This

shows that k(M (D)) < k(D)+1. Similarly, we can prove that k(M'(D)) < k(D)+2
E(T(D)) < k(D) + 1. Our theorem is thus proved.

The third assertion in Theorem 3.2 was obtained by Yan and Zhang [16] and You
and Liu et al. [17].

Remark 2 Let Dy, = (V(Ds), A(D>)), V(D) = {1,2},andA(D,) = {(1,1),(1,2),
(2,1)}. It is obvious that D, is a primitive digraph and k(D,) = 2,k(M(D,)) =
E(T(Ds)) = 3,k(M'(D5)) = 4. This example shows that the upper bounds in Theo-
rem 3.2 are obtained.

Theorem 3.3 Let D be a digraph. Then

1. If D is a directed cycle with n vertices, then k(M(D)) = k(M'(D)) = k(T(D)) +
1=2n.

2. If there exist no directed cycles in D, then k(M (D)) = k(M'(D)) = k(T(D) =
2k(D) — 1 = 2I(D) + 1, where I(D) denotes the length of the longest directed path
in D.

Proof It is easy to prove that the first assertion holds.
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Assume that there exist no directed cyclesin D. By Lemma 2.5, then p(M(D)) =
p(M'(D)) = p(T(D)) — 1, I(M(D)) — I(M/(D)) — (T(D)) — 21(D). By Proposi-
tion 1.2, then k(M (D)) = k(M'(D)) = k(T(D)) = 21(D) + 1, and k(D) = (D) + 1
Hence k(M (D)) = k(M'(D)) = k(T(D)) = 2k(D) — 1 = 2I(D) + 1. Thus the second
assertion holds. Our proof thus follows.

Partial results on T'(D) in Theorem 3.3 were obtained by Yan and Zhang [16]
and You and Liu et al. [17].

Theorem 3.4 Let D be a strongly connected digraph. Then

k(M(D)) > Diam(D) + 1,k(M'(D)) > Diam(D) + 2,k(T(D)) > Diam(D) + 1.
Proof Let Diam(D) = d. If D is a directed cycle with n vertices, then by Theorem
3.3 we have k(M(D)) = E(M'(D)) = K(T'(D))+1 =2n > d+ 1. If Dis not a
cycle, then by Proposition 1.3 we have Diam(L(D)) = d + 1. Let ;&1 - Titat1
be the directed path of length d + 1 in L(D). Then the (i,i+d+1)-entry of matrix
T+ AL+ A2 + .-~ 4+ A% equals zero. Hence I + Ay + A2 +--- + A £ J,.. By
Lemma 2.2, then A%, # J,,,,. By Lemma 2.6, M (D) is a primitive digraph. Hence
E(M(D)) > d+1. Similarly, we can prove that k(M'(D)) > d+2 and k(T (D)) > d+1.
Our proof thus follows.

The third result in Theorem 3.4 was obtained by Yan and Zhang [16].
Remark 3 Let D3 = (V(D;), A(Ds)),V(D;) = {1,2}, A(D3) = {(1,1),(1,2),(2,1),
(2,2)}. Tt is easy to prove that k(M(Ds)) = k(T(D;)) = 2, k(M'(D3)) = 3, and
Diam(D3) = 1. Hence k(M(D;)) = k(T(D3)) = Diam(D;) + 1 and A(M’(Dg)) =
Diam(D3) + 2. This example shows that the lower bounds in Theorem 3.4 are
obtained.
Theorem 3.5 Let D be a digraph. Then
K(T(D)) < K(M(D)) < K(T(D)) +1, k(T(D)) < K(M'(D)) < K(T(D)) + 1.
Proof First, we prove that k(T'(D)) < k(M(D)) < k(T(D))+1. Let k(M (D)) = k.
By Corollary 2.7, then A%, = A¥™. We distinguish the following two cases:
Case 1 Let k be odd. Since A%, = A¥F by Lemma 2.2, we have

v Ak71+Ak72+ +A (Ak—l +Ak—2+ +A o1 )
M T BlT(Akfl +Ak72+-~-+AT) Al};_i_Al}jl +A+

k+1

k41

A A . . k+1
_ ( Ab 4 AR 4. +A_k (AF 4 AR 4. 4 A% k+)1 e
BT(AF 4 AF-L oo ASY) ARTL LAk g 4 M
Hence
(1) Akl AR-2 4 +Ak+1 = AF 4 A1 4. +Ak+1
(2) (Ak—l +Ak_2 +---+A ) 0 = (Ak Ak 1 + - )
(3) BIT(Ak—1+Ak—2+...+A’°;1) BY(AF + AF1 4 --—|—A )7

) AR AR A — A Ak ---+Az+l.
By (1), we have

AAR 4 AR2 p o AT ) AT S A(AR AR AT ) AT
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Thus "
(1) Ak—kAk_l—I—---—&-Ai*Al""l—&-Ak --—&-A%.
By Lemma 2.4, then

. Abp AR A (AL ARz 4 AN B,
= . i bl ;
T BIT(Ak_1+Ak_2+"'+AT) A1£+AIL_1+---+A2

Al — AR AR AT (AR AR AW) .
BIT(A’”‘+A’”‘*1+---+AT) A§+1+A’i‘+---+AL
By (1), (2), (3), and (4), then A% = A% Thus k(T(D)) < k = k(M(D)).
Case 2 Let k be even. Similarly, we can prove that k(T'(D)) < k = k(M(D)).
Hence we proved that k(T(D)) < k(M(D)).

Now we prove that k(M(D)) < k(T(D)) + 1. Let k(T(D)) = k'. By Corollary
2.7, then A% = AX+! We distinguish the following two cases:

Case a Let &' be odd. Since A% = AX*! by Lemma 2.4 we have

k41

e AF AR -1 g AT (Ak’—l L AMZ L g Aklgl)
= T( Ak —1 K=2 ., Kt K M1 oL, e
Bl (AP 14+ AV 2 4.+ A5 AV + AT+ + A

B AMFL L AR +Ak 41 (Ak' + AF-L 4 4 ATB, e
- ! 4 " ’ B 41 T
BT(AF 4 A¥ -1 4 .. +Ak+1) Ali+l+A’£+~-~+AL;
Hence y M1 K41 Pl Ko K41
(5) A AFS 4 AT = AR A S+ ASE
© (A4 A AT - (1 A AT By
(7) BT(AM-L 4 AF=2 4 .. 4 A" ) = BT(AF 4+ AV 4. gAY £y,
/ v K41 , . K41
(8)() A¥ AR AT AR A A
By (6), then
(AF=1 4 AF=2 o AT B BT = (AF 4+ A¥ T 4 4 ASE By BT
Hence
(5) AW AR AR S AR AN AN
By (5), then
(6,) (Ak/ +Akl_1 + +Ak +1) (Ak/+1 +Akl +Ak +I)BO7
(7') By (A¥ + A¥ ' . +Ak+1) BT (A¥+ +A’»’ L AT,
By (7), then

1 K41

BI(AF= 4 AF 2 o 4 AMT_)BO =BT(A¥ + A¥ 14 ... 4 A2)B,.

Hence
K4 k'+3

! ./ 71 ! ./
(9) A¥ AR AT AR AN
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By (8), then

’ , k'+3 . , &
(10) AR AR g AT = AR AT A
We plus both sides of the equation (9) by A%+ then we have

' , K41 v , k43
(11) AV LAY AT = AN AN A
By (10) and (11), thus

' T A L SR ZE RV A BN

(8) AT+ AL 4+ A AT AT 4+ A

By Lemma 2.2, then
AR AR +Ak+1 (Ak’_'_Ak’fl_'_..._FAkl;l)B
Jroo a )
BY(AY + V=L A AT Al At

A AR+ AR +Ak+3 (Ak’+1 AR 4 +Ak+l)
Y BI(AMH 4 AF 4o f AMEY aF e ae gt )
By (5'),(6), (7') and (8'), then Afv,“ = A¥*2 Hence k(M(D)) < k'+1 = k(T'(D))+
1.
Case b Let &' be even. Similarly, we can prove that k(M (D)) < k(T(D)) + 1.
Hence we have proved that k(T(D)) < k(M(D)) < k(T(D)) + 1.

Similarly we can prove that k(T(D)) < k(M'(D)) < k(T(D)) + 1. Our proof
thus follows.

Remark 4 Let Dy = (V(Dy), A(Dy4)),V(Ds) = {1,2,3,4}, A(Ds) = {(1,2),(2,1),
(2,3),(3,4),(4,1)}. Then k(M(Dy)) = k(M'(Dy)) = k(T(D4)) = 6. Note that the
digraph D; in Remark 1 shows that there are digraphs D such that k(M(D)) =
E(T(D)) +1 or k(M'(D)) = kE(T(D)) + 1. Thus the bounds in Theorem 3.5 are
obtained.

Corollary 3.6 Let D be a digraph. Then k(M(D))—-1 < k(M'(D))

<
Proof By Theorem 3.5, it follows that k(T(D)) < (M(D)) < k(T(D)) + 1, and
KT(D)) < K(M'(D)) < K(T(D))+1. Hence k(M(D))-1 < K(M/(D)) < K(M(D))+
1.

Remark 5 Let Dy = (V(D5), A(Ds)),V(Ds) = {1,2,3},andA(Ds) = {(1,2),(2,2),
(2,3)}. Then k(M(Ds)) = 3,k(M'(D5)) = 2. Hence k(M'(Ds)) = (M( 5)) — 1.
This shows that there are digraphs D such that k(M'(D)) = k(M(D)) — 1. The
digraph D, in Remark 4 shows that there are digraphs D such that k(M'(D)) =
E(M(D)). The digraph D, in Remark 2 shows that there are digraphs D such that
kE(M'(D)) = k(M(D)) + 1.

Theorem 3.7 Let D be a digraph. If there are not both sources and sinks in D,
then k(M (D)) < k(M'(D)) < k(M(D)) + 1.

Proof By Corollary 3.6, we only need to prove that k(M (D)) < kE(M'(D)). Let
E(M'(D)) = k; then A%, = A%F'. Hence we only need to prove that A%, = A%t
We distinguish the following two cases:
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Case 1 We suppose that there are no sources in D.
Subcase 1.1 Let k be odd. Since A%, = A El by Lemma 2.3 we have

Ak—i—Ak*l—}— S+ AT
1

4 kil (Ak—1+Ak—2+,_,+A’“2;1)BO
;= 1 A L
M BY(AM 4 AF2 4o AR AR AR oA

_< AL AR AT (A’”+A“+ +AR) B >_Ak+1
- = kL

BI(AF + A g A Ay A A
Hence . "
(1) Ak—f—Ak_l—&----—f—A%:Ak"'l—&-Ak __+A‘2L7
(2) (A AR AT By = (AR AR g AT By,
(3) BY(ARL 4 AF2 4o 4 A'FY) = BT(AF 4 AR 4 Ai)
k41 +1
(4) AF+M?+M+&2:%+Mﬂ+M+&

We multiply both sides of the equality (4) by Ay; then

k+3 k+3

A Al A = AR AR A

Hence . .
(1) Ab A AT S AR AR AT
By (4), then
k+1 k+1

(AT 4+ A2+ -+ A Bl = (A + AT+ -+ A2 )BT

by Lemma 2.1, then

(5) BT (A1 4 A2 4. o+ Ak“) BY(AF 4 AR 4o 4 Ak“)

Let Cy :Ak_1+Ak_2+-~-+A " and Cy :Ak+Ak‘1+-~-+A z . By (5), then
BIC, = BT(C,. Since there are not sources in D, By Lemma 2.8, then C; = C,.
Hence

(2/) Ak_1+Ak_2 —&-Aﬁ *Ak—&-Ak_l +Ak;rl.

By (2'),(2),(3), and (1’), then

k+1

ko Ak*1+Ak*2+~--+AT (Ak71+Ak72+"-+A%)BO
" BI(AML 4 Ak=2 4o AR oAb AR A

Ab g AR AT (AR AR 4 4 AT B, .
- ( BT(AF 4 AF1 o Ay ARk ) = A

Hence k(M(D)) < k = k(M'(D)).

Subcase 1.2 Let k be even. Similarly, we can prove k(M (D)) < k = k(M'(D)).

Case 2 We suppose that there are no sinks in D.

Let D* denote the converse digraph of D. Then there are no sources in D*. By
Case 1, we have k(M (D*)) < k(M'(D*)). It is easy to prove that M(D*) = M*(D),
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M'(D*) = M"™(D), k(M(D)) = k(M*(D)) and k(M'(D)) = kE(M"™(D)). Hence
k(M(D)) < k(M'(D)).
By Cases 1 and 2, Theorem 3.7 holds.

By Theorem 3.7, the following corollary is obvious.

Corollary 3.8 Let D be a strongly connected digraph; then
k(M(D)) < k(M'(D)) < k(M(D)) + 1.

4 Some problems

In this section, we will pose some problems on the classification of digraphs by their
indices of convergence.

Let D be a digraph. Theorem 3.5 shows that k(T'(D)) < k(M(D)) < k(T(D))+1
and k(T (D)) < k(M'(D)) < k(T (D)) + 1. Corollary 3.6 shows that k(M (D)) — 1 <
E(M'(D)) < k(M(D)) +1 and Theorem 3.7 shows that if there are not both sources
and sinks in D then k(M(D)) < k(M'(D)) < k(M(D)) 4+ 1. Hence the following
problems of characterization of digraphs are worth considering.

Problem 1 Determine the digraphs D such that k(M (D)) = k(T (D))

or k(M(D))=k(T(D)) + 1, respectively.

Problem 2 Determine the digraphs D such that k(M'(D)) = k(T(D))

or k(M'(D))=k(T(D) + 1, respectively.

Problem 3 Determine the digraphs D such that k(M'(D)) = k(M(D)) — 1,

or k(M'(D))=k(M(D)), or k(M'(D))=k(M(D)) + 1, respectively.

Problem 4 Suppose that there are not both sources and sinks in D. Determine the
digraphs D such that k(M'(D)) = k(M (D)) or k(M'(D))=k(M(D))+1, respectively.
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