AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 31 (2005), Pages 167-177

Altitude of small complete and complete bipartite
graphs

A. P. BURGER, E. J. COCKAYNE AND C. M. MYNHARDT

Department of Mathematics and Statistics
University of Victoria
P. O. Box 3045
Victoria, BC, Canada V8W 3P4

{alewyn,cockayne,mynhardt}@math.uvic.ca

Abstract

An edge-ordering of a graph G = (V, E) is a one-to-one function f from
E to the set of positive integers. A path of length & in G is called a (k, f)-
ascent if f increases along the edge sequence of the path. The altitude
a(G) of G is the greatest integer & such that for all edge-orderings f, G
has a (k, f)-ascent.

We obtain upper bounds for the altitude of complete and complete
bipartite graphs, and exact values for some small graphs.

1 Introduction

A one-to-one function f from E to the set of positive integers is called an edge-
ordering of the graph G = (V, E). For e € E, we call f(e) the label of e, and use e
and f(e) interchangeably. Denote the set of all edge-orderings of G by F. For f € F,
a path of G for which f increases along the edge sequence, is called an f-ascent of G,
and a (k, f)-ascent if it has length k. The height h(f) of f is the maximum length
of an f-ascent. The parameter of principal interest in this work is a(G), the altitude
of G, defined by
a(G) = min h(f).

Observe that a(G) is the greatest integer & such that G has a (k, f)-ascent for each
edge-ordering f € F.

Clearly, a(G) > 2 for any graph G with a vertex of degree at least two. It is
also evident that if H is a subgraph of G, then a(H) < a(G). The altitude of some
classes of graphs is easy to determine, for example, (trivially) a(K,) =1, a(K3) = 2
(since K3 has no path of length three), a(Cs,) = 2 and «(Capt1) = 3 for all n > 2.
Let E, E,, E5 be (the edge sets of) any 1-factorization of K4 and f an edge-ordering
such that the labels of the edges in E; are 2¢ — 1 and 2¢, ¢ = 1,2, 3. It is easy to see
that A(f) =2 and so a(K,y) = 2.
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The problem of determining a(K,) was first posed by Chvatal and Komlds [5],
and Calderbank, Chung and Sturtevant [4] obtained the asymptotic bound

a(Ky) < (5 +o(1))n.

The general bounds

IWin=3-1) <a(K,) < &
were obtained by Graham and Kleitman [6], but the proof of the upper bound is
incorrect.

Calderbank et al. state that the upper bound of %" has been improved to % by
Alspach, Heinrich and Graham. However, this improved bound does not hold for
n =7>5,...,,8 (see Section 4), and its proof does not appear in the literature.

In this paper we prove that for m < n,

a(Kpq) < min{2m, [3 [5]]},
and for n even,

[H2]  ifn =10 (mod 16)

a(Kn—l) < Q(Kn) <

| #2=L|  otherwise.

These bounds enable us to determine a(K,,,) and a(K,) for certain small values of
m and n. For work on the altitude of other classes of graphs the reader is referred
to [1, 8, 9].

2 Determination of upper bounds for altitude

The principal results of Sections 3 and 4 will be established using the methods of
this section. These techniques have also been exploited in [4, 6, 8, 9].

Let P = (Ey, ..., Ey) be an ordered partition of the edge set E of G and let f be
any edge-ordering of G satisfying

e; € E; and e; € Ej, where i < j, implies f(e;) < f(e;).

Such an edge-ordering is called P-consistent.

For i = 1,...,t we use the abbreviations f; = f | E; and G; = G[E;] (the subgraph
of G induced by E;). Observe that f; is an edge-ordering of G;. In the edge-sequence
X of an f-ascent of G, for each ¢ < j, edges in E; precede edges in E;. Hence
X = Xi,...,, Xy, where X; (possibly empty) is an f;-ascent of G;.

Proposition 1 For any graph G, a(G) < Zzzla(Gi).
Proof. Let f be P-consistent and satisty h(f;) = a(G;) for each i = 1,...,t. Suppose
that X is an f-ascent of G with maximum length A(f). Then

t t

(G Sh(f) =D NI <Y h(f) =D a(G).  m

i=1 i=1
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In many cases judicious choices of the ordered partition P and the P-consistent
edge-ordering f enable us to improve the upper bound of Proposition 1. More specif-
ically, these choices may allow us to find consecutive sets Ej, ..., £, so that the maxi-
mum length of an ascent in f | (E;U...UE}) is equal to }_;a(G;) — ¢ for some ¢ > 0.
In such a case it is easily seen that the bound may be improved to ¥ a(G;) — c.
Situations of this type involving just two consecutive sets E;, E;4y of the partition
include:

(i) G; and G,y are vertex disjoint. In this case no edge of E;4; may follow an edge
of E; in an f-ascent A\. Hence A (considered as an edge set) satisfies \NE; = ¢
or AN E; 1 = ¢, and the upper bound may be decreased by min{a;, a1}

(#1) Property (i) does not hold, but there is no vertex which is both the terminal
vertex of an (ay, f;)-ascent in G; and the initial vertex of an (a;t1, fiy1)-ascent
in Gi+l~

(#74) Properties (i) and (#i) do not hold. However, paths which negate Property (i7)
have more than one common vertex.

The above method easily establishes the following result. Part (ii¢) was proved
in [9].

Proposition 2 (i) If G has components Gy, ..., Gy, then o(G) = maxi_; {a(G))}.

(t1) If P = (Ey, ..., E) is a partition of E such that G; is 1-regular for each i, then
a(G;) =1 and hence a(G) < t.

(t43) If G has mazimum degree A, then a(G) < A+ 1.

Proof. Statements (i) and (i7) are obvious and (7i¢) follows from Vizing’s theorem
(cf. [2]) that states that E can be partitioned into at most A 4 1 matchings. [ |

Our final observation of this section relates altitude and the independence number

.
Proposition 3 For any graph G of order n, a(G) < 2(n — ).

Proof. If I is an independent set of G, then any vertex in V' — I is incident with at
most two edges of any path A, and A contains no edges of G[I]. [ ]

3 Altitude of complete bipartite graphs

It is easy to see that for m < n, E(K,,,) can be partitioned into n sets E, ..., E,
such that |E;| = m and K,,,[E;] is 1-regular for each i. Thus by Proposition 2(it),
a(Ky,,) < n. Also, by Proposition 3, a(K,,,) < 2m. We therefore have

Proposition 4 If m < n, then a(K,,,) < min{2m,n}.
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Figure 1: Two edges in E; followed by two edges in E, form a Cy in Ky 4.

Another simple application of the partition method of Section 2 decreases the
bound of Proposition 4 in many cases.

Theorem 5 (i) o(Kay2,) < [3n/2].
(1) If m < n, then a(Kp,) < min{2m, [3[2] /2]}.

Proof. (i) Let (Fi,..., F,) be any ordered 1-factorization of K, ,, and let P = (Ey, ...,
E,) be the ordered 2-factorization of Ky, 2, obtained by replacing each edge of F;
with a 4-cycle. Note that for each i, G; = nCy and so by Proposition 2(i), a(G;) =
a(Cy) = 2. Let f be a P-consistent edge-ordering of Ky, 5, with h(f) = k, and such
that h(f;) = 2 for each i = 1,...,n. If Ais a (k, f)-ascent of Ky, a,, then A contains
edges from at most one 4-cycle in each 2-factor and so A contains at most two edges
in each E;. Suppose that for some 7, A contains two edges in E; and two edges in
Ei+1. Then, as illustrated for K, 4 in Figure 1, where only the edges of G; and A
(grey thicker edges) are shown, A contains a 4-cycle, a contradiction. Thus whenever
A contains two edges of E;, it contains at most one edge of E;;; and it follows that
k<[]

(1) The result follows immediately from (i) and Proposition 4. |
Corollary 6 (i) a(Ky3) = a(Ks33) = a(Ke4) = a(K34) = a(Ksa) = 3.

(11) a(Kay,) =4 forn >5.

Proof. (i) As shown in in [1], a(Ks3) > 3 and the result follows from Theorem 5

and the observation that if H is a subgraph of G, then a(H) < a(G).

(27) The value a(Kp5) = 4 was obtained in [§8] and Proposition 4 asserts that
a(K,,) < 4 for all n. [ |

Our final result of this section establishes the altitude of some other small com-
plete bipartite graphs.
Theorem 7 (i) For3<m <4,5<n<6, ao(Kp,) =4.
('LL) OC(K5,5) = 4
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Proof. (i) Since a(K,j5) = 4, it suffices to show that a(Kye) < 4. Let H be the
6-vertex edge-ordered tree in Figure 2. It is easy to see that a(H) = 2, but we
will use the given ordering of E(H) of height three. Consider the ordered partition
P = (E,, Ey, Ey) of E(Kyg), where H; = Ky 6[E] = Cy UH, i = 1,3, Hy > C4 U Py,
and Ky6[E; U Ej], i # j, are the graphs G, ; shown in Figure 2. (The edges in E;,
i < j, are thinner than those in E; and the edges in E, are grey.) Let f be an
ordering of K4¢ such that

e f is P-consistent,

e the restriction of f to F, and to each Cy component of H;, i = 1,3, has height
two,

in the component H;[{a,b,c,d,e}] = H of Hy we havea <b<cande<d <c
(the given edge-ordering of H satisfies this ordering),

e in the component Hs[{p,q,r,s,t}] = H of H; we haver <g<pandr < s <t
(for example, subtract each given label of H from 25),

k <lin E,.

In this and subsequent proofs, (uvw...) will denote an f-ascent whose edges (in
sequence) have the labels u,v,w, ... . Suppose A = (vvzyz) is a (5, f)-ascent in Kyg.
If u,v,z € Ey, then (uvz) = (ede), soy € {p,q,7} C E; and hence z € E3. But then
A = (edcrs), which is not a path. Similarly, A does not contain the subpath (rst).
Consequently A contains edges in each E;, hence u € Ey, x € E, and 2z € Ej.

Suppose v € E;. The ordering imposed on H; and the fact that z € Ey show
that the initial vertex of (uvz) is one of A, B, D or R, and the terminal vertex is
one of C, D or Y.

If the initial vertex is A or B, then the terminal vertex is C or D, and y ¢ E,, for
otherwise A contains a 4-cycle. Hence y € E3;. However, as can be seen from G 3,
then y € {p,t}, and with the given ordering of Hj, (uvzy) cannot be extended to a
(5, f)-ascent.

If the initial vertex of (uvx) is D, then (uvxz) = (abk) and so y € {l,s,t}. But if
y = [, then the only possibility for z is z = ¢, a contradiction since (bklq) is a 4-cycle,
if y = ¢, then (abkt) is a 4-cycle, and r < s implies that (abks) cannot be extended.

If the initial vertex of (uvz) is R, then = [, and since k < I, y € E3. Thus
y € {t,s}, but (uvls) is a 4-cycle and (uvlt) cannot be extended to a (5, f)-ascent.

Hence there is no (5, f)-ascent with v € E;. We conclude that v € E; and deduce
that Yy € Eg.

Counsider the possible (4, f)-ascents (vayz) in the graph G 3. To avoid 4-cycles,
(vayz) does not have initial vertex A or B. If the initial vertex is C', then y = ¢ and
since s < t, (vat) cannot be extended to a (4, f)-ascent. Similarly, since p > ¢ > r,
the initial vertex is not D. The only other possible initial vertex is @), in which case
(vz) = (kl), which extends uniquely to the (4, f)-ascent (klgp). The only edge in E;
adjacent to k is b. However, (bklgp) contains a 4-cycle, and with this contradiction
the proof is complete.
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Figure 2: An edge-ordering of Ky of height four
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Figure 3: An edge-ordering of K5 of height four

(i1) Let P = (E1, E,, E3) be the ordered partition of E(Kj5) such that for i = 1,3,
K5 5[E;] = Cyp and Kj5[Es] = 5K,. Suppose f is a P-consistent edge-ordering such
that for « = 1,3, h(f;) = 2. Any (5, f)-ascent contains one edge in E, and two
edges in each of £; and E3. However, any such choice of edges contains a 4-cycle
(see Figure 3, which uses the same convention as Figure 2) and hence does not form
a path of length 5. Therefore a(Ks55) < h(f) < 4. Since a(K;5) > a(Kys) = 4
(Corollary 6(ii)), we have a(Ks5) = 4 as required. [ |

4 Altitude of complete graphs

Since there exist Ky-resolvable block designs of K, for all n = 4 (mod 12) (see
[7]), there exists, for each k& > 1, a factorization Gy @ -+ @ Gapy1 of Kiagqsa such
that G; = (3k + 1)Ky for each ¢ = 1,...,4k + 1. Thus by Propositions 1 and 2 and
the fact that a(Ky) = 2, we have a(Kigp4a) < (4k + 1)a(Ky) = 8k + 2, that is,
a(K,) < %(n —1) for n =4 (mod 12). Hence in general, since a(H) < a(G) if H is
a subgraph of G,

a(K,) < 2(12[%2] +3). (1)

We now use the bound for «(K,,) in Theorem 5(i¢) to establish another upper
bound for a(K,). Although this bound is better than the bound in (1) for only
finitely many values of n (n = 270 being the largest integer for which the bound in
Corollary 9 is smaller than that in (1)), it is required to establish exact values of
a(K,) for some small n.

Theorem 8 For anyn > 2, a(Ky,) <n+ ’VW-I
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Proof. Consider the ordered partition P = (Ey, Ey, F3) of E(Ky,) with Ky,[E] =
K, and Ky, [Ey] = Ky, [E3] = K,. Let f be a P-consistent edge-ordering of Ks,. A
(k, f)-ascent A cannot contain edges from both Ey and Ej since Ky, [Es] and Ky, [E3]
are vertex-disjoint and the edges (in E;) between these two sets have smaller labels
than any edges in E, U E3. Without loss of generality say A contains no edges

in F3 and x edges in Fy. These = edges use [M] vertices in Ky, [Es] and thus A

2
contains at most n— [’”%1] edges (the number of vertices remaining) in Ey. Therefore
E<z+n-— [’”Zil] =n+4+ [”772] . The maximum of this expression over the permitted

values of © occurs when & = (K, ,). [ |

Theorem 5(4i) immediately gives

Corollary 9 For anyn > 2, a(Kon-1) < a(Ka,) <n + [W-I Thus, for m
even,
[H2]  if m =10 (mod 16)
a(Kmfl) S a(Km) S

L“%_IJ otherwise.

Using the method of the proof of Theorem 8 and the value a(Kj5) = 4 obtained
in Theorem 7(ii), we also have the following result, an improvement on the bound
above.

Corollary 10 a(Ky) < a(Kjg) < 6.
We next provide proof that a(Ks) = 3 and «(Ks) = 4.
Proposition 11 «(Kj) = 3.

Proof. Let (Ey, E;) be any 2-factorization of K5 and f an edge-ordering such that
the edges of the 5-cycle induced by E; (E,, respectively) are labelled, in sequence,
1,5,2,4,3 (6,10,7,9,8). Any (4, f)-ascent contains edges from both E; and E, (because
h(f;) =3 for i = 1,2). Let X be a (k, f)-ascent in K;. If v1,vs,v3,vs is the vertex
sequence of A in Cs[E;], then both edges in E, incident with v, are incident with
vy Or Vg, 50 k = 3. If vy, vy, 03 is the vertex sequence of A in C5[E;], then the only
edge in E, incident with vs but not vy, is followed by an edge of F, incident with
ve. Hence again k = 3. By symmetry, no path of length two or three in Cs[Es] can
be extended to a (4, f)-ascent, and so «(Kj5) < 3. Since Cj is a subgraph of K, it
follows that a(K5) = 3. [ |

Theorem 12 «o(Kg) = 4.

Proof. The upper bound of Corollary 9 gives a(Ks) < 4 and it remains to show that
there is no edge-ordering of Ky of height three. Suppose to the contrary that f is
an edge-ordering of K¢ with h(f) = 3 and (abc) is a (3, f)-ascent as in Figure 4(a).
Without loss of generality, assume y, < y;. We will repeatedly use the following
lemma. The trivial proof of each part follows its statement; proofs of some parts
require preceding parts.
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(©): O, x, x,) (d): (rpz))

(©): (pre)

Figure 4: 3-ascents in Kj in the proof of Theorem 12
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Lemma 12.1 Considering (abc), we have

y1<ec, y<c avoid (abcyi), (abeys))
T >a, T9>a avoid (z1abe), (xpabe))
T >y, T2 >Yr  (avoid (axyyic), (azaysc))

) (
) ( (
) ( (
(iv) 22 <x (avoid (yay12122))
) ( (
) ( (
) (

V) wy >Yp, wy>yp (avoid (wiysyiry), (WaYay171))
(vi) w; >a avoid (yswiazi))
(vii) we > 29 avoid (Yawezax1)).

We also prove the following two lemmas.
Lemma 12.2 25 < ;.

Proof. Suppose the contrary, i.e. z; < 3. We apply Lemma 12.1 to (y1z122). It is
helpful to redraw f as in Figure 4(b). If w, < w;, Lemma 12.1(v) gives z3 > wy which
contradicts Lemma 12.1(vii). Therefore wy < w,. Lemma 12.1(#44) gives ¢ > w, and
we have (awjwsc), a contradiction. O

Lemma 12.3 (i) r <y (i4) z >p (iit) c>r (iv) p<r.

Proof. To establish (i), (4¢) and (i4i), we apply Lemma 12.1 to (ysaex1). The ex-
istence of this (3, f)-ascent is asserted by Lemmas 12.1(4¢) and 12.2. We redraw
(y221) as in Figure 4(c). By Lemma 12.1(¢), r < ;. By Lemma 12.1(i43), z; > p
and ¢ > 7.

(iv) Suppose that r < p. Then by (ii) we have the path (rpz;) which is drawn
in Figure 4(d). By Lemma 12.1(vii), wy > 2, and it follows from Lemma 12.2 that
s < y2. Now, by Lemma 12.1(v?), w; > a. By Lemma 12.1(v) applied to (rpz1),a > s
and by Lemma 12.3 applied to (rpz1), wy < ws. Hence (saw;w,), a contradiction.[

We complete the proof of Theorem 12. By Lemma 12.3 we have (prc), redrawn
in Figure 4(e). Since w; > q, it follows from Lemma 12.2 that s < y,. We apply the
preceding lemmas to (pre): By Lemma 12.1(v), 22 > s, by Lemma 12.3(i), wy < wy,
and the original Lemma 12.1(vii) states that wy > 25. Therefore (szwow;), the
final contradiction which shows that no edge-ordering with height three exists, hence
Oé(Ke) =4. | |

Using a computer program we found that a(K;) = 5. (In fact, we found an
edge-ordering of K; with exactly one 5-ascent.) Hence, using the upper bound in
Corollary 9, we have

Corollary 13 a(K7) = a(Ks) = 5.
We also found an edge-ordering of K;; without 8-ascents, hence a(K;;) < 7.
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