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Abstract

A linear space with few lines is a finite linear space in which the number
b of lines is a bit larger than the number v of points (K. Metsch, Finite
linear spaces with few lines, Lec. Notes in Math. 1490, Springer-Verlag,
1991). In this paper some new classes of finite linear spaces with few lines
are investigated and classified.

1 Introduction

A linear space is a pair (P, L), where P is a set of points and L is a family of subsets
of P, called lines, such that: any two points are on a unique line, each line has at
least two points and there are at least two lines.

If (P, L) is a finite linear space, that is |P| < oo, the degree of a point p is the
number [p] of lines through p and the length of a line L is its cardinality. The numbers
v=|P|,b=|L|, [p] for all p € P, and |¢| for all £ € L, are called the parameters of
(P, L). Moreover let m and k denote the minimum point degree and the maximal
line length, respectively.

A finite linear space is irreducible if any line has length at least three.

A projective plane is an irreducible linear space in which any two lines intersect
in a point.

A near-pencil on v points is a linear space on v points with a line of length v — 1.

Clearly the near-pencils and the projective planes are the only linear spaces in
which any two lines intersect in a point.

An (h,k)-cross (h,k > 3) is the linear space on v = h + k — 1 points, with two
lines of length h and k respectively, intersecting in a point p, and any line not on p
has length 2.

* This research was partially supported by G.N.S.A.G.A. of INdAM and the MIUR project—
Strutture geometriche combinatoria e loro applicazioni.
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An affine plane is a linear space such that for any point-line pair (p, ¢), with p ¢ ¢,
the number of lines passing through p and missing ¢ is exactly one.

Let (P, L) be a linear space, and let X be a set of points of P such that outside of
X there are at least three non-collinear points. Deleting X from (P, £), one obtains
a new linear space called the complement of X in (P, L).

For example, the complement of a line in a projective plane is an affine plane.

A punctured (respectively doubly-punctured) linear space (P, £) is the complement
of a point (respectively two points) in (P, L).

In 1948 de Bruijn and Erdés [5] proved (the Fundamental Theorem) that each
finite linear space has at least as many lines as points, with equality only if it is a
projective plane or a near pencil. This theorem was the starting point for the study
of the following problem.

Characterize or classify finite linear spaces with b= v + s for a fixed value of s.

Since the early 1970s a number of results have been obtained on this question
(see for example [1, 3, 8, 9, 10, 15, 18, 19, 23]).

In this paper we give a complete classification of finite linear spaces with b—v < k
(Theorem 2.5), (k being the maximum line length), and as a corollary we also obtain
the classification of finite linear spaces with b — v < 1+ /v (Theorem 2.6).

2 Preliminary results and notions

In this section we recall some definitions and results on finite linear spaces we need
in the following.

Throughout the paper we assume that £ > m+ 1. If £ < m, then we can use the
classification of Lemma 2.1 below.

The order of a finite linear space (P, £) is the integer n such that n+1 = m%}x[p].
e

If (P, L) is a finite projective plane, then there is an integer n such that [p] =
|{| = n+1for all p € P and for all £ € L, and so the order of a finite projective
plane is the length of one of its lines less one.

As an affine plane is the complement of a line in a projective plane, we have
[pl=1¢|+1=mn+1forall p e P and for all £ € L, so the order of an affine plane is
the size of any of its lines.

Two lines £ and ¢ of a linear space (P, L) are parallelif ¢ = ¢ or (N ¢ = .

In an affine plane (P, L), the set of lines parallel to a given line ¢ partitions the
set of points of (P, L), and this set of lines is called a parallel class of ¢. A parallel
class consists of n lines.

An affine plane with a point at infinity is a linear space obtained from an affine
plane by adding a “new point”, called a point at infinity, to the point set of the affine
plane and to all the lines of the parallel class of a line ¢.

An affine plane with a linear space at infinity (or an inflated affine plane) (P, L)
consists of an affine plane together with a linear space imposed on some of its infinite
points.
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If the linear space at infinity is a near-pencil or a projective plane, then (P, £) is
called a projectively inflated affine plane.

If the linear space at infinity consists of all points at infinity of the affine plane,
then (P, L) is called a complete inflated affine plane.

Let (P, L) be a linear space; the linear space obtained from (P, £) by adding a
new point and connecting it to every old point by a line of length 2 is called a simple
extension of type 1 [10].

The linear space obtained from a linear space (P, L) by adding a new point to
some line L of (P, £) and connecting it to every point outside of L by a line of length
2 is called a simple extension of type 2 [10].

In both cases the new point is called the special point of the extension.

A subspace of a linear space (P, L) is a linear space (P',L£') with P’ C P and
L'={(nP |teLl}.

Suppose that (P, L) has s > 1 subspaces (P;,L;), j = 1,...,s and that there
exists a point ¢ with P; N'P; = {q} for ¢ # j. If s =1 then we suppose furthermore
that ¢ € Py and (P1,L;) # (P,L£). Then we can smooth (P, L) in the way we
replace (P;, L;) by a line (i.e. we remove the lines of (P}, £;) and adjoin the set P;
as a new line), j = 1,...,s, and obtain a linear space (P',L'). Suppose that (P', L)
has n? + n + 1 lines and that (P, £’) can be extended to a projective plane 7 of
order n. Then (P, L) is called an s-fold inflated projective plane of order n [10]. In
(P', L"), the point g lies on the lines P; and on n + 1 — s further lines Ly, ..., L,_;.
If n41—d, is the length of L; in (P, L), then dy+ - - - + d,—; is called the deficiency
of (P, L).

The spaces (Pj, L;) are called the main subspaces of (P, L).

Hence an s-fold projective plane with deficiency d can be obtained from a pro-
jective plane of order n as follows: we fix a point ¢ and s lines Hy, ..., H; through
q. For j € {1,..., s}, we remove the line H; and some of the points of H; (but not
¢q) and impose a linear space (P}, £;) on the remaining points of H;. Furthermore,
we remove d points which do not lie on any line H; in such a way that we do not
produce lines of size less than 2. Notice that 1-fold inflated projective planes with
deficiency O are the inflated affine planes.

2.1 Restricted linear spaces

A finite linear space is called restricted if it fulfills the inequality b — v < /v. In
the 1970’s De Witte [22] started the study of restricted linear spaces, and after him
J. Totten [18] was able to classify all restricted linear spaces proving the following
famous theorem.

Theorem 2.1 (Totten, (1976), [18]) Suppose that (P, L) is a linear space satisfying
b— v < \/v. Then the following hold.

1) (P,L) is a near pencil.

2) (P,L) is a projective plane of order n with at most n points deleted but not
more than n — 1 from the same line.



148 VITO NAPOLITANO
3) (P, L) is an affine plane, or an affine plane with one infinite point, or a punc-
tured affine plane with one infinite point.
4) (P, L) is a complete projectively inflated affine plane.
5) (P, L) is the (3,4)—cross.

2.2 Weakly restricted linear spaces

A finite linear space with b—v < V/b is called weakly—restricted [10]. The classification
of such linear spaces is due to Metsch [10], who proved the following classification
theorem.

Theorem 2.2 (Metsch, (1991) [10], Thm. 8.6, pp. 79-84) Suppose that (P, L) is a
linear space satisfying b—v < Vb, withn?> —n+2 < v <n?>+n+1. Then (P, L) is
one of the following linear spaces.

1) A restricted linear space.

2) An affine plane with a punctured projective plane onn or n+1 points at infinity.
3) A complete projectively inflated punctured affine plane.

4) An affine plane of order 4 or 5 with the (3,3)—cross at infinity.

5) The linear space obtained from the projective plane of order 3 by deleting two
lines, their point of intersection, and two more points from each of these lines.

6) The (3,5)-cross.

7) The linear space on v =7 points, b = 10 lines, with a line of length 4, three of
length 3 and the remaining of length 2.

8) The linear space on v = 8 points, b = 11 lines, with a line of length 4, siz of
length 3, the remaining of length 2, and with a point not on any line of length 3.

2.3 Further generalizations

At the end of the 1980’s, Metsch [11], in order to solve the Dowling—Wilson conjec-
ture,! proved the following interesting classification result.

Theorem 2.3 (Metsch, (1991) [10], Thm. 17.1, pp. 181-187) Suppose that (P, L)
is a linear space satisfying b—v < [q] — 2 for some point q. Then one of the following
cases occurs.

1) (P,L) can be obtained from a projective plane of order n = [q] — 1 by removing
b—wv (< n—1) points and q is any point of the plane.

1Let (P, L) be a finite linear space with v points and b lines. For every point-line pair (p, ¢),
with p € ¢, let m(p,{) denote the number of lines through p missing ¢. Then the Dowling- Wilson
conjecture [7] states that b > v + w(p,¢) for each of its non-incident point-line pairs.
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2) (P, L) is a near-pencil and q is any point of the near pencil.

3) (P, L) is a simple extension of type 2 of a generalized projective plane and q is
the special point.

4) (P,L) is an affine plane of order n with one point at infinity and q is not the
point at infinity.

5) (P, L) is an s-fold inflated projective plane of order n for some integers s and
n withl < s<n. If (P, L1),...,(Ps,Ls) are its main subspaces then ¢ is a
point of every subspace (Pj,L;). Furthermore, if b; is the number of lines of
(Pj, L;), vj its number of points, and r; the degree of q in (Pj, L;), and if d is
the deficiency of (P, L), then b; < vj+1; —2 for all j, and

24 d+ (s~ Dn+ 1)+ 3 by — vy — ) <0

J=1

Conversely every linear space satisfying 1), 2), 3), 4) and 5) is a linear space satis-
fying b — v < [q] — 2 for some point q.

After this result, other cases have been considered, (see for example [15, 13]).
Recently Durante [6] has investigated the case s = k, k being the maximum line
length, and Theorem 2.4 below contains his results.

2.4 Finite linear spaces with b —v < k

In this section we give a list of finite linear spaces with v points and b—v < k. Before
giving the list, we recall some definitions.

A Bridges space is a linear space with b — v = 1, and in view of Bridges theorem
[3], it is either the (3, 3)-cross or a punctured projective plane.

The Nwpanka-plane is the linear space obtained from the complete graph Kg by
adding to each of its five parallel classes (each of them formed by three lines of length
2) a new point and putting the five new points so obtained on a line.

A near-pencil is also called a degenerate projective plane.

Clearly, in what follows PG(2,q) denotes the desarguesian projective plane of
order q. Now we are ready to give the list of finite linear spaces with b — v < k.

El. A near-pencil.

E2. A linear space with P = ¢ U ¢, with |{| = k and |¢'| = 2.

E3. The (4, 4)-cross.

E4. The (3, k)-cross.

E5. An extension of type 2 of the Fano plane.

E6. The Nwpanka-plane.

E7. The linear space obtained from the affine plane of order 3 by deleting a line ¢
but one point ¢ € ¢ and by adding a triangle at infinity.

E8. The linear space is obtained from PG(2,3) by deleting two lines ¢, ¢ but two of
their points ¢ € £\ {N{¢ and ¢ € '\ (N L.
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E9. The linear space obtained from PG(2,3) by deleting all its points except four
collinear points of a line L and except for three points outside of L forming a
triangle.

E10. The linear space obtained from PG(2,4) by deleting two lines ¢, ¢' but two of
their points ¢ € £\ {N{¢ and ¢ € '\ (N L.

E11. The linear space obtained from PG(2,4) by deleting all its points except five
collinear points of a line L and except for three points outside of L forming a
triangle.

E12. An affine plane of order k.

E13. An affine plane of order k£ — 1 with a point at infinity.

E14. A punctured affine plane of order k — 1 with a triangle at infinity.

E15. An affine plane of order k — 1 with a (possibly degenerate) projective plane at
infinity.

E16. A linear space obtained from a projective plane of order k£ — 1 by deleting k& — 1
non-collinear points.

E17. A punctured affine plane of order & — 1 with a point at infinity.

E18. An affine plane of order & — 1 with a Bridges space at infinity.

E19. A punctured affine plane of order k — 1 with a (possibly degenerate) projective
plane at infinity.

E20. A linear space obtained obtained from a projective plane of order k£ — 1 by
deleting k points, with at most & — 2 of them collinear.

E21. A linear space obtained from a projective plane of order £ — 1 > 3 by deleting
a line L but one of its points, and two more points outside of L.

E22. A projective plane of order k£ — 1 with at most & — 2 points deleted.

Theorem 2.4 (Durante, 2002 [6]) Let (P,L) be a finite linear space satisfying
b—v < k. Then either (P, L) is one of the linear spaces E1, ..., E22, orb—v = k, the
mazimum point degree is k+1, there are points of different degree and b > k* —k+3,
(and if b=k* — k + 3 then k < 10).

In this paper we prove the following two results.

Theorem 2.5 Let (P, L) be a finite linear space, and let k be the mazimum line
length. If b—v < k, then (P, L) is one of the linear spaces described in E1,. .., E22.

Theorem 2.6 Let (P, L) be a finite linear space satisfying b —v = 1+ y/v. Let k
and m denote the maximum line length and the minimum point degree, respectively.
Then eitherb—v <m orb—ov <k.

Thus, in view of Lemma 2.1, Theorem 2.5, and Totten’s Theorem [18], one has
that, apart from a few cases with a small number of points, a finite linear space with
b—v < 144/v is either obtained from a projective plane inflating one of its lines and
deleting (possibly) some points, or it is obtained from a projective plane by removing
a suitable set of points (possibly also some lines).
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2.5 Two useful lemmas

In this section we recall a theorem on the classification of finite linear spaces with
b—v < m [12], and also a result on finite linear spaces with b — v = 5, which will be
two useful lemmas in the following.

Lemma 2.1 Let (P, L) be a finite linear space on v points, such that b — v < m.
Then one of the following holds.

1) (P,L) is the near pencil on v points, the (3,3)-cross, the (3,4)-cross or the
linear space on v =5 points, with a line of length 3 and all the other of length
2.

2) (P,L) is an affine plane of order m — 1 or a punctured affine plane of order
m — 1.

3) (P, L) is an affine plane of order m with a point at infinity.
4) (P, L) is a punctured affine plane of order m with a point at infinity.

5) (P, L) is obtained from a finite projective plane of order m — 1 by deleting at
most m points.

6) (P, L) is an affine plane of order m—1 with either a punctured projective plane,
or the (3,3)-cross at infinity.

7) (P, L) is a projectively inflated punctured affine plane of order m — 1, with at
least four points at infinity.

8) A projectively inflated affine plane of order m — 1.
9) (P, L) is a punctured affine plane of order m — 1 with a triangle at infinity.

10) (P, L) is the linear space on v = 7 points, b = 10 lines, m = 3, with a single
line of length k = m+ 1 = 4, three lines of length 3 and the remaining lines of
length 2.

11) (P, L) is the linear space on v = 8 points, b = 11 lines, m = 3, with a single
line L of length k =m + 1 =4, siz lines of length 3 and the remaining lines of
length 2, and on each point of L there is a line of length 3.

12) (P, L) is the linear space on v = 8 points, b = 11 lines, m = 3, with a single
line L of length k = m+ 1 = 4, six lines of length 3 and the remaining lines of
length 2, and with a point L on which there is no line of length 3.

Finally, from the results contained in [14] one obtains the following statement.

Lemma 2.2 If (P, L) is a finite linear space with v points, b= v + 5 lines, v > 10,
with at least two points of degree m, k > m-+1 and m > 4, then (P, L) is one of the
following two linear spaces.
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(i) The Nwpanka-plane.

(ii) The linear space obtained from the projective plane of order 4 deleting two lines
¢ and U' and their points, but a point p on { and a point p' on \ {'.

2.6 Some embedding results

A finite linear space is embeddable in a finite projective plane if it is possible to add
points and lines to obtain a finite projective plane. For example a finite affine plane
is embeddable in a finite projective plane; actually adding to each parallel class a
new point and imposing these new points to form a new line one obtains a finite
projective plane.

The embedding problem for finite linear spaces in finite projective planes is one of
the most interesting problems in finite geometries, and in the literature we can find a
number of papers devoted to this question (the interested reader is referred to [2, 10]
in which he can find many of the most important results on this question and also
a complete bibliography on this topic). In this section we collect some embedding
results.

Theorem 2.7 (Vanstone [20]) Ewvery finite linear space with constant point degree
n+1,b=n?4+n+1 lines and v > n® can be embedded into a projective plane of
order n.

Theorem 2.8 (Metsch [10], Lemma 3.6) Ewvery finite linear space with constant
point degree n + 1, b < n? 4+ n lines and v > n® — n + 1 points can be embedded into
a projective plane of order n.

Theorem 2.9 (Metsch [10], Corollary 5.7) If (P,L) is a finite linear space with
v >n? —n+ 2 points and b < n?® + n lines, then one of the following cases occurs:

(i) (P,L) is a near-pencil.
(it) (P, L) can be embedded into a projective plane of order n.

(iii) (P, L) is the (3,6)-cross or a simple extension of type 2 of the Fano plane.

3 The result

In this section we are going to prove Theorems 2.5 and 2.6.

3.1 Finite Linear Spaces with b —v <k

In this section we are going to characterize finite linear spaces with b — v < k. We
proceed as follows.

o First we study the case in which there are two lines containing all the points
of (P, L) showing that the linear space is one of the linear spaces described in
El,... E4.
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After, we study the case b— v > m + 1, and we prove that

o cither (P, L) is embeddable in a finite projective plane of order m, or k = m—+2
and (P, L) is the linear space E11, or k = m~+1 and (P, L) is one of the linear
spaces described in E5, E6, E7T, E9, E'10.

Hence, together with Lemma 2.1 we get the complete classification of finite linear
spaces with b — v < k.

Proposition 3.1 Let (P, L) be a finite linear space with b—v < k. If there are two
lines ¢ and €' such that P = Ul then (P,L) is one of the following linear spaces.

1) The linear space on v = k + 2 points, with a single line of length k, all the
remaining lines of length 2 and with a line of length 2 parallel to the line of
length k.

2) The near-pencil on v points, a (3,k)-cross or the (4,4)-cross.

Proof. Put |[¢| =k and |¢'| = h. So by definition h < k. We distinguish two cases.
CASE 1. /n¢ =0.
In such a case we have that v = h+k and b = hk + 2. So from b < v + k it
follows that
hk +2 < h+ 2k,

that is,
h(k—1) < 2(k—1),
from which it follows that 2 = 2, and so we have the linear space described in 1).
CASE 2. (N £ 0.
In this case we have v =h+k—1land b= (h—1)(k—1)+2. From b—v < k it
follows that
(h=1)(k=1)+2<h+2k-1,

from which
(h—=1(k=1)<h—-1+2(k-1),

and so
(k=1)(h-1-2)<h-—1.

Since h < k, it follows that
(h—1)(h=3) <h-1,

and so h < 4.
If h =2,then v =k + 1 and (P, £) is a near-pencil.
If h =3, then v =k +2 and (P, L) is a (3, k)-cross.
If h =4, then v = k+3. Thus b = 3k — 1 < 2k + 3, and so it follows that
kE=h =4 and (P, L) is the (4,4)-cross. Hence the assertion is completely proved.
]
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So from now on we may assume that for any given pair of lines there is at least
a point outside of them, and so in particular m > 3.

In view of Lemma 2.1 we may assume b —v > m + 1, and so k > m + 1.

Since k > m+1, it follows that if x is a point of degree m and ¢ is a line of length
k, then z € (.

3.2 There is a single point p of degree m

Let p be the unique point of degree m. In such a case all the lines of length £ pass
through p, and counting the lines meeting a line of length k& we have that b > km.

Proposition 3.2 There are at least two lines of length k.

Proof. Assume to the contrary that there is a single line ¢ of length k.

First we prove that k > m + 2.

Ifk=m+1, then b—v < m+ 1. And so by our assumption b — v = m + 1.
Hence b > m? +m, and sov > m? — 1. Sincev <m+ 1+ (m—1)2 =m? —m + 2,
it follows that m < 3. Som = 3, v = 8 and b = 12. From the Doyen list of finite
linear spaces on at most nine points, we have that such a finite linear space cannot
exist (see for example the Appendix in [2]).

Now we are going to prove the assertion. We distinguish two cases:

(i) There is a line of length k — 1 on p.

(i) There is no line of length k — 1 on p.
Case (i). Let h be a line of length £ — 1 on p. Then each point of h has degree
at least k, and since there is a point outside of ¢ U h, it follows that h has at least
a parallel line. Thus, counting the lines meeting h or parallel to &, one obtains
b>m+ (k—2)(k—1)+1. Since b < v+ k < mk + k — 2m + 2, we obtain

1+ k(k—3) — k < m(k—3),

and so
(k—m)(k-3)<k-1

From k& > m + 2 it follows that 2k — 5 < k and so m = 3 and k = 5. Moreover h has
exactly one parallel line, and ¢ has no parallel lines, one point of degree m, one point
of degree k = m + 2 and all the other points of degree £ — 1 = m + 1. Since points
outside of ¢ have degree m + 2 and h has one parallel line, it follows that the third
line on p has length 2. Hencev=5+3+1=9. But b>km=15>v+k=14,a
contradiction.

Case (ii). Now each line on p, different from ¢, has length at most k& — 2.

Counting v via the lines on p gives v < k+ (m — 1)(k — 3).

If each point of ¢ different from p, has degree at least m + 2, then b > m + (k —
1)(m+1), and som+ (k—1)(m+1) < 2k+ (m —1)(k —3). It follows that 3m < 4,
a contradiction.

Thus ¢ has a point y of degree m+1, and so k—2 < m+1. Hencev < k+(m—1)m,
from which it follows that b < 2k + m(m — 1).
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Since b > km, we have
E(m —2) <m(m—1). (1)

From k > m + 2, it follows that m < 4.

If m =3, then v < 3k — 6, and so b < 4k — 6.

Since b > km = 3k, it follows that k£ > 6 = m + 3. Thus by Equation (1) we have
k=m+3=6,b=Fkm =18 and v = b — k = 12. Hence every point of ¢ different
from p has degree m + 1, and every point outside of ¢ has degree m + 3. On a point
of degree m + 1 there are ¢ and three lines of length m = 3. Let x be a point not on
¢, then 12 = v = |pz| + (m + 2)(m — 1) = |pz| + 10.

Thus the lines on p different from ¢ have length 2, a contradiction.

Therefore m = 4. Thus k = m + 2 = 6, and b > 24. Counting v via the lines on
p gives v < k+3(k—3)=6+3-3 =15, contradicting v > b — 6 = 18.

Hence there are at least two lines of length k. d

Proposition 3.3 & =m+ 1 and either (P, L) is the unique linear space on v =10
b = 14 lines and with m = 3, or (P, L) is embeddable in a finite projective plane of
order m.

Proof. Since there are two lines of length k, each point different from p has degree
at least k. Counting the lines meeting a line of maximal length gives b > m+(k—1)2,
and counting v via the lines on p, we have v < m(k —1) + 1.

Since b < m(k — 1) + 1+ k, we have

m+ (k-1 <m(k—1)+1+k,

(k=1)(k—-1-m)<k+1-m<k-2

and so K = m + 1. Hence b — v < m + 1. Thus by our assumptions we have
b—v=m+ 1. Then
mi4em<b<m?+m+2.

If b=m?+m+2, then v=m?+1 and from a theorem of Stinson [16] it follows
that (P, L) is the unique linear space with m = 3,v = 10 and b = 14.

If b=m? 4+ m+ 1, then v = m?. The case with a point of degree at least m + 2
cannot occur (by [10] Thm. 7.4). So m + 1 is the maximum point degree, and from
Theorem 2.7 we have that (P, L) is obtained from a projective plane of order m by
deleting at most m points and no line.

If b = m? + m, then v = m? — 1 and by Theorem 2.9 (P, L) is embeddable in a
finite projective plane of order m. O

3.3 There are at least two points of degree m

In such a case there is a single line ¢ of length £.
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Proposition 3.4 FEither (P, L) is the Nwpanka-plane, or on a point of degree m
there is at least one line of length m.

Proof. Let p be a point of degree m. Assume on the contrary that on p there is
no line of length m. Then v < k+ (m — 1)(m —2) = k +m? — 3m + 2. Thus,
b<2k+m?—3m+2 Fromb>1+k(m — 1) it follows that

E(m —3) <m(m —3)+1.

Hence, either m = 3, or &k Sm—i—ng, k=m+41and m = 4.

If m = 3, then v < k + 2, a contradiction since (P, L) is not the union of two
lines.

If m = 4, then v = 11, b = 16, every point of ¢ has degree m = 4, and ¢ has no
parallel line. Thus, the lines have length 3 and 5, points have degree 4 and 5. From
Lemma 2.2 it follows that (P, £) is the Nwpanka-plane. O

Thus, from now on we may assume that (P, £) is not the Nwpanka-plane.

Proposition 3.5 b > 2+ k(m — 1).

Proof. Let p be a point of degree m of ¢, and L be a line of length m on p. Since
(P, L) is not the union of ¢ and L, we have that there is a line ¢ parallel to L, and
so either ¢ has a point of degree m + 1 or a parallel line. a

Proposition 3.6 (P, L) is one of the following linear spaces.

(i) The linear space obtained from the projective plane of order 4 by deleting all its
points except five collinear points of a line { and except for three points outside
of ¢ forming a triangle®.

(ii) A simple extension of type 2 of the Fano—plane.

(i1i) The linear space obtained from the projective plane of order 4 by deleting two
lines t and t' but one point on t and one point on t'\ t.

(iv) The linear space obtained from the projective plane of order 3 by deleting all
its points except four collinear points of a line L and except for three points
outside of L forming a triangle.

Proof. If k > m + 2, then the line L of the previous proposition has two parallel
lines, and so b > 3 + k(m — 1). It follows that

3+ k(m—1) <2k+(m—1)% (2)

from which, it follows that, either m = 3, or

1
E<m+1+4——.
m—3

2Notice that in this case we have k = m + 2
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Thus, either £ =m + 2 and m =4, or m = 3.

From Equation (2) it follows that the points have degree at most m + 3. If there
is a point of degree m + 3 outside of ¢, then b > 4 4 k(m — 1). Thus Equation (2)
gives kK < m + 1, a contradiction. So points outside ¢ have at most degree m + 2.
Hence £ = m + 2, and ¢ has no parallel line.

If m = 3, then v < k +4. Since (P, L) is not the union of two lines, we have
v>k+3,andso8=k+3<v<k+4=09.

If v = k44 = 9 then on a point of degree m there are at least two lines of length m.
So, the line L of the previous propositions, has at least four parallel lines, and since
¢ has no parallel line, it follows that k+v > b > 54+ k(m—1) =2k+5=15 > k+wv.
Thus, v = k+ 3 = 8. It is easy to see that (P, £) is the linear space described in (i).

Ifm=4,thenv="~k+(m—1)?%and b=2k+ (m —1)? =3+ k(m — 1). Thus
on a point of degree m there are at least two lines L and H of length m. Let = be a
point of H \ {¢}. The two parallel lines on = to L give two points of degree m + 1 on
¢, and since b = 3+ k(m — 1) it follows that m = |H| = 2, a contradiction. Hence
k=m+1l,andsob—v=m-+ 1.

It follows that v < m + 14 (m — 1) =m? —m + 2, and so b < m? + 3.

CASE 1. b=m? + 3.

In such a case v = m? — m + 2, and b = m? + 3 < m? +m, and by Theorem 2.9
we have that either (P, L) is embeddable in a projective plane of order m, or it is
a simple extension of type 2 of the Fano plane, that is the linear space described in
(ii). Consider the case in which (P, L) is embeddable in a projective plane of order
m. Then maximum point degree is m + 1 and so ¢ has no parallel line, and it has
exactly three points of degree m + 1. Since v = m? — m + 2 on a point of degree m
there are m — 1 lines of length m. Let H and K be two lines of length m meeting
¢ in a point of degree m; then since ¢ has three points of degree m, K has length
at most 4, otherwise the parallel lines to H and meeting K would meet £ in at least
four points of degree m + 1. So m < 4. Since there are at least two points of degree
m on ¢, it follows that m = 4. So (P, L) is the linear space described in (iii).

CASE 2. b=m? +2.

We have v = m? —m+1. If £ has a parallel line, then there is a point of degree at
least m 4 2, and so ¢ has exactly one parallel line ¢ and exactly one point of degree
m + 1. Let L be a line of length m meeting ¢. Since ¢ has exactly one point of
degree m + 1, a contradiction follows. So ¢ has no parallel lines. Hence each point
outside of ¢ has degree m + 1. If on a point of degree m there are two lines of length
m, then since there are at most two points of degree m + 1 on ¢ we have m = 3, a
contradiction, since v = m? —m + 1. So on a point of degree m there is a single line
of length m, and so again m =3, b—v =4, v = 7. Hence, (P, L) is the linear space
described in (iv).
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CASE 3. b=m? + 1.

Now v = m? — m. In this case ¢ has either a parallel line or a single point of
degree m + 1. Since there are lines of length m, it follows that ¢ has no parallel line.
Thus, ¢ has a single point of degree m+ 1, and all the points outside of it have degree
m+ 1. It follows that on a point of degree m there is a single line of length m. Thus
m?>—m <v<m+1+m—1+(m—2)2, from which it follows that m < 4. If m = 3,
then v < 6, and it is easy to see that this case is not possible.

If m =4, then v = 12, b = 17, and by Lemma 2.2 this case cannot occur. a

3.4 Thecase b—v<1++v

In this section we study finite linear spaces with b — v < 1+ /v. The classification
of such finite linear spaces is, clearly, a slight generalization of Totten’s classification
theorem (see [10], page 78), and, as other results of this type, it may be useful in the
study of finite linear spaces with a “small” number of points.

In view of Totten’s theorem we have to consider only the case b — v =1 + \/v.

We are going to show that such a linear space fulfills either b — v < m or b —
v < k, and so Lemma 2.1 and the results of the previous section give the required
classification. So let (P, L) be a finite linear space with b — v =1+ /v.

Proposition 3.7 There is no finite linear space with b—v = 1+ /v such that there
are two lines { and ¢ such that P =0U /(.

Proof. If{N{¢ #0,thenm=2,v=h+k—1(<2k—1),and b= 2+ (h—1)(k—1).
It follows that
24 (h—1)(k—=1)=h+k+ /v,
and so
(k=2)(h—2) =1+ .
Thus
k#2, h#£2.

If h =3, then k — 3 = vk + 2, a contradiction.

If h =4, than 2k — 5 = /k + 3, again a contradiction.

If h > 5, then 3k — 7 < /v <2k —1 < k, and so k = 3. Using an argument as

above we get a contradiction.
If¢n¢ =0, then v =h+k and b = hk+2. From b = v + /v + 1 it follows that

(h— 12k -1 =h+k.

If h =2, then k2 — 3k +1 = 0, a contradiction since k is an integer.
If h > 3, then 2k? — 5k +2 < 0, from which it follows that k& < 2, a contradiction
since 3 < h < k. a

As a consequence we have that for any two given lines there is a point outside of
them. In particular m > 3.
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3.5 The case k <m

In such a case counting the number of points v via the lines on a point of minimum
degree gives v < m(m — 1) + 1. Hence v < m?*. Thus /v < m, and so b — v < m.
3.6 The case k> m+1

If there are two points of degree m, then there is a single line of length £, and so
v<k+(m—-1°<k+(k—22 =k —k+4.

If £ > 5 then /v < k, and so b — v < k.
Ifk=4,thenm=3and v < k+4 < (k—1)%
If there is a single point of degree m, then

v<14+mk—1)<1+(k-1)%

Ifo<(k—1)2 thenb—v <k
Finally, from v = 1+ (k — 1)? < k? it follows that b — v < k.

Thus, in view of the results of the previous section and of Lemma 2.1 we have
the classification of finite linear spaces with b —v < 1+ /v.
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