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Abstract

A c-partite tournament is an orientation of a complete c-partite graph. A
digraph D is cycle complementary if there exist two vertex disjoint cycles
C and C' such that V(D) = V(C)U V(C"). In 1999, Yeo conjectured
that each regular c-partite tournament D with ¢ > 4 and |V(D)| > 6
has a pair of vertex disjoint cycles of length ¢ and |V(D)| — ¢ for all
t € {3,4,...,|V(D)| — 3}. In this paper we prove that this conjecture
is valid for the case ¢ = 3, unless D is isomorphic to 17, Dy, or Dj,,
where T7 is a 3-regular tournament with 7 vertices and D, 5 and Dj 5 are
3-regular 4-partite tournaments such that there are exactly two vertices
in each partite set.

1. Terminology

A c-partite or multipartite tournament is an orientation of a complete c-partite
graph. A tournament is a c-partite tournament with exactly ¢ vertices. By a cycle
(path) we mean a directed cycle (directed path).

We shall assume that the reader is familiar with standard terminology on directed
graphs (see, e.g., Bang-Jensen and Gutin [1]). In this paper all digraphs are finite
without loops or multiple arcs. The vertex set and the arc set of a digraph D are
denoted by V(D) and E(D), respectively. If xy is an arc of a digraph D, then we
write £ — y and say x dominates y. If X and Y are two disjoint subsets of V(D)
or subdigraphs of D such that each vertex of X dominates every vertex of Y, then
we say that X dominates Y, denoted by X — Y. Furthermore, X ~» Y denotes the
property that there is no arc from Y to X. The number of arcs going from X to YV
is denoted by d*(X,Y").

The out-neighborhood N}, (x) = N*(z) of a vertex x is the set of vertices domi-
nated by x, and the in-neighborhood N, (x) = N~ (z) is the set of vertices dominating
x. For a set of vertices X in D, we define D[X] as the subdigraph induced by X.
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The numbers df(z) = d*(z) = |[N*(z)| and dj(z) = d~(z) = |N~(z)] are the out-
degree and indegree of x, respectively. The minimum outdegree and the minimum
indegree of D are denoted by (D) and 6~ (D), and the mazimum outdegree and the
mazimum indegree of D are denoted by AT(D) and A~(D), respectively.

The global irregularity of a digraph D is defined by

ig(D) = max{max(d* (x),d” (z)) — min(d*(y),d" (y)) | z,y € V(D)},

and the local irregularity by /(D) = max |d*(z) — d~(«)| over all vertices & of D. If
ig(D) = 0, then D is regular.

A cycle of length m is an m-cycle. A cycle in a digraph D is Hamiltonian if it
includes all the vertices of D. A set X C V(D) of vertices is independent if the
induced subdigraph D[X] has no arcs. The independence number a(D) = « is the
maximum size among the independent sets of vertices of D. A digraph D is strongly
connected or strong if, for each pair of vertices v and v, there is a path from wu to
vin D. A digraph D with at least k& + 1 vertices is k-connected if for any set A
of at most k — 1 vertices, the subdigraph D — A obtained by deleting A is strong.
The connectivity of D, denoted by (D), is then defined to be the largest value of k&
such that D is k-connected. A cycle-factor of a digraph D is a spanning subdigraph
consisting of disjoint cycles. A cycle-factor with the minimum number of cycles is
called a minimal cycle-factor. If x is a vertex of a cycle C, then the predecessor and
the successor of x on C are denoted by = and x™, respectively.

2. Introduction and preliminary results

A digraph D is cycle complementary if there exist two vertex disjoint cycles C
and C’ such that V(D) = V(C) U V(C"). The problem of complementary cycles in
tournaments was almost completely solved by Reid [7] in 1985 and by Z. Song [10] in
1993. They proved that every 2-connected tournament 7' on at least 8 vertices has
complementary cycles of length ¢ and |V(T')|—t for all t € {3,4,...,|V(T)|—3}. Some
years later, Guo and Volkmann [4], [5] extended this result to locally semicomplete
digraphs. A digraph is locally semicomplete if for each vertex z, the set of in-neighbors
as well as the set of out-neighbors of z induce semicomplete digraphs, where a digraph
is called semicomplete if any two vertices are adjacent. The more general problem of
partitioning a highly connected tournament into k vertex-disjoint cycles was posed
by Bollobés (see Reid [8]). Recently, Chen, Gould, and Li [3] proved that every k-
connected tournament T with |V(T')| > 8k contains k vertex-disjoint cycles spanning
the vertex set.

In addition, there are some results on complementary cycles in bipartite tour-
naments by Z. Song [9], K. Zhang and Z. Song [19], K. Zhang, Manoussakis and
Z. Song [18], and K. Zhang and J. Wang [20]. However, there is nothing known
on complementary cycles in c-partite tournaments for ¢ > 3. There exist only the
following two conjectures.
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Conjecture 2.1 (Yeo [16] 1999) A regular c-partite tournament D with ¢ > 4
and |V(D)| > 6 has a pair of vertex disjoint cycles of length ¢t and |V(D)| — ¢ for all
te{3,4,....|V(D)| - 3}.

Conjecture 2.2 (Volkmann, [11] 2002) Let D be a multipartite tournament.
If k(D) > a(D)+1, then D is cycle complementary, unless D is a member of a finite
family of multipartite tournaments.

Our first three examples will show that Conjecture 2.1 by Yeo is not valid in
general when t = 3.

Example 2.3 (Reid [7] 1985) Let T be the 3-regular tournament presented in
Figure 1. Then it is straightforward to verify that 77 does not contain a 3-cycle Cj
and a 4-cycle Cy such that V(T7) = V(C3) UV(Cy).

Figure 1: The 3-regular tournament 7%

Example 2.4 Let Vi = {z1,22}, Vo = {y1,92}, Va3 = {u1,u2}, and Vi = {v1, vy}
be the partite sets of the 3-regular 4-partite tournament D, presented in Figure 2.
Then it is straightforward to verify that D4, does not contain a 3-cycle C5 and a
5-cycle C5 such that V(Dsz) = V(C3) UV(Cs).
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Figure 2: The 3-regular 4-partite tournament D, ,
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Example 2.5 Let Dj, be the 3-regular 4-partite tournament presented in Figure 3.
Then it is straightforward to verify that Dj, does not contain a 3-cycle Cs and a
5-cycle Cs such that V(Dj,) = V(C3) UV(Cs).
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Figure 3: The 3-regular 4-partite tournament Dy,

However, we will show in this paper that Conjecture 2.1 is true for ¢ = 3, unless
D is isomorphic to T, Dy, or Dy, (cf. Examples 2.3, 2.4, and 2.5).

The following results play an important role in our investigations. We start with
a well-known fact about regular multipartite tournaments.

Lemma 2.6 If D is a regular c-partite tournament with the partite sets Vi, Vs, ..., V,,
then a(D) = || = [V = ... = |V,|.

Theorem 2.7 (Bondy [2] 1976) Each strong c-partite tournament with ¢ > 3
contains an m-cycle for each m € {3,4,...,c}.

Theorem 2.8 (Reid [7] 1985) If T is a 2-connected tournament with |V (T')| > 6,
then T contains two complementary cycles of length 3 and |V(T)| — 3, unless T is
the tournament T; described in Evample 2.35.

Theorem 2.9 (Yeo [15] 1998) If D is a multipartite tournament, then

H(D) > |V(D)| — a(D) - 2ll(D)
- 3

Theorem 2.10 (Yeo [14] 1997) Let D be a (|q/2]| + 1)-connected multipartite
tournament such that a(D) < q. If D has a cycle-factor, then D is Hamiltonian.

Theorem 2.11 (Yeo [17] 1999) Let V1, V4, ..., V. be the partite sets of a c-partite
tournament D such that V1] < |Va| < ... <|V|. If

D)| — |Veoy| = 2|V |+ 2
i (D) < WD) = Werr| = 21Vel +2
2

then D is Hamaltonian.
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Lemma 2.12 (Yeo [17] 1999, Gutin, Yeo [6] 2000) A digraph D has no cycle-
factor if and only if its vertex set V(D) can be partitioned into four subsets Y, Z, Ry,
and Ry such that

Ri~Y and (RiUY)~ Ry,

where Y is an independent set and |Y| > |Z]|.

Theorem 2.13 (Yeo [14] 1997) Let D be a multipartite tournament having a
cycle-factor but no Hamiltonian cycle. Then there exists a partite set V* of D and
an indexing Cy, Ca, ..., Cy of the cycles of some minimal cycle-factor of D such that
for all arcs yx from Cj to Cy for 2 < j <t, it holds {y*,z~} CV*.

3. Main results

Theorem 3.1 Let D be a regular c-partite tournament with ¢ > 4 and |V(D)| > 6.
Then D contains two complementary cycles of length 3 and |V (D)| — 3, unless D is
1somorphic to Ty, Dy, or Dj,.

Proof. If V], V;,..., V] are the partite sets of D, then Lemma 2.6 leads to |V]| =
|[Vi| =...=|V]| = a(D). Let r = a(D); hence |V (D)| = cr. According to Theorem
2.9, we have

If c > 6 and r = 1 (that is, D is a tournament), then (1) yields k(D) > 2, and the
desired results follows from Theorem 2.8.

Therefore, it remains the case that r > 2. In view of Theorem 2.7, there exist a
3-cycle C5 in D. If we define the c-partite tournament H by H = D — V(C3), then
ig(H) <3 and |V(H)| =cr — 3. If V4, V3,...,V, are the partite sets of H such that
Vi| < Vo] < ... < |V|, then |Vi| =r =1, |V.| =7, and |V3]| = |V._1| = r — 1 in the
case that ¢ = 4. With exception of the cases c =6 and r =2, ¢ =5 and r < 3, and
¢ =4 and r < 5, the hypothesis leads to

[V(H)| = [Ver| = 2[Ve| +2

5 .
Applying Theorem 2.11, we conclude that H has a Hamiltonian cycle C, and we ob-
tain the desired result that V(D) = V(C5)UV(C). Since there is no regular c-partite

tournament for ¢ = 4 and r = 3,5, there remain the cases c=6 and r =2, ¢ =5
and r=2,3, and c=4 and r = 2,4.

ig(H) <3<

Case 1. Suppose that ¢ =6 and r = 2.

Then D is 5-regular and «(H) = 2. In addition, inequality (1) yields x(D) > 4,
and thus k(H) > 1.

Subcase 1.1. Assume that H has a cycle-factor.

Let C1,CY,...,C; be a minimal cycle-factor with the properties described in
Theorem 2.13. If ¢ = 1, then H has the Hamiltonian cycle C] and so V(D) =
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V(Cs) UV(CY). If not, then |V(H)| = 9 implies t < 3. Because of |[V*| < 2, it
follows from Theorem 2.13 that there is at most one arc from C) U C4 to C]. If Cf
is a 3-cycle, then it is easy to see that there is a vertex x in Cj such that d}(z) > 6,
a contradiction to the 5-regularity of D. If C] is a 4-cycle, then ¢t = 2 and C} is a
5-cycle. If ('} induces a tournament in H, then, since there is only one arc from C}
to C], we obtain

Y dy(@) = > diyepy(@) +d7(C1,C)

zeV(CY) zeV(CY)
> 64 (17 -1) =22,

a contradiction to the 5-regularity of D. The same holds true if C] induces a 3-
partite or a bipartite tournament. If C] is a 5-cycle and C} is a 4-cycle, then we
arrive analogously at the contradiction Ygcy (cy) d(2) > 22. Finally, if O] is a 6-
cycle, then it is easy to see that there is a vertex x in C) such that dgz(z) > 6, a
contradiction to the 5-regularity of D.

Subcase 1.2. Assume that H has no cycle-factor.

Then, with respect to Lemma 2.12, the vertex set V(H) can be partitioned into
subsets Y, Z, Ry, Ry such that Ry ~ Y, (RiUY) ~ Ry, |Y| > |Z|, and Y is an
independent set. Since k(H) > 1 and a(H) = 2, we see that 1 = |Z] < [Y| = 2. Let
Vi = {a}, Vo = {b}, Vs = {c}, Vi = {u1, w2}, Vs = {v1, 12}, and Vi = {wy, ws}, and,
without loss of generality, Y = V. Since D is 5-regular, we see that df;(z),dy (z) > 2
for all x € V(H) and df(x),dg(z) > 3 for z = a, b, c.

If Ry =0, then V; =Y ~» R, leads to the contradiction d(u;) < 1. If Ry = 0,
then R, ~» Vj leads to the contradiction df(u;) < 1. If 1 < |R;| < 2, then there
exists a vertex € R; such that dgn(z) < 1, a contradiction. If 1 < |Rs| < 2, then
there exists a vertex z € Ry such that df;(z) < 1, a contradiction. In the remaining
case that |Ry| = |Ry| = 3, let Ry = {z,y,z} and let, without loss of generality,
dy(z) > 3. This implies {y, 2} — z and so, dg(y) < 1 or dz(z) < 1, a contradiction.

Case 2. Suppose that ¢ =5 and r = 3.

Then D is 6-regular and «(H) = 3. Furthermore, inequality (1) yields k(D) > 4.
Suppose that there exists a separating set S of D with |S| = 4. Let Dy, D,,..., D,
be the strong components of D — S such that D; ~ D; for 1 < ¢ < j <t. Then
we can assume, without loss of generality, that |V (D;)| < 5. If there exists a vertex
r € V(D) with dp () < 1, then dp(x) < 5, a contradiction. Otherwise, D, is
necessarily a 2-regular tournament. But then there are vertices € S and y € V(D)
which are not adjacent. This leads to the contradiction dj(y) < 5. Consequently,
we even observe that (D) > 5 and thus, k(H) > 2.

Assume that H has a cycle-factor. Applying Theorem 2.10 with ¢ = 3, we deduce
that H has a Hamiltonian cycle Ci5 and so V(D) = V(Cs) U V(Cia).

Suppose now that H has no cycle-factor. Then, with respect to Lemma 2.12,
the vertex set V(H) can be partitioned into subsets Y, Z, Ry, Ry such that Ry ~ Y,
(RiUY) ~ Ry, |Y| > |Z], and Y is an independent set. Since x(H) > 2 and
a(H) = 3, we see that 2 = |Z] < |Y| = 3. Let Vi = {us,us},Va = {v1,02},V3 =
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{w1,we},Va = {&1, 22,23}, Vs = {v1,¥2,¥3}, and, without loss of generality, ¥ =
Vi. Since D is 6-regular, we see that dj(z),dy(z) > 3 for all z € V(H) and
dh(z),dz(x) >4 for v € VL UV, U V3.

If Ry = 0, then V4 ~ R, leads to the contradiction dz(z;) < 2. If Ry = 0, then
Ry ~ V, leads to the contradiction dfj(z;) < 2. If 1 < |Ry| < 2, then there exists
a vertex ¢ € R; such that dg(z) < 2, a contradiction. If 1 < |Ry| < 2, then there
exists a vertex z € Ry such that dj;(z) < 2, a contradiction. In the remaining, as-
sume, without loss of generality, that |R;| = 3. If R; = V4, then dg(z) < 2 for every
vertex € Ry, a contradiction. Otherwise, let Ry = {z,y,2} and let, without loss
of generality, dg(x) > 4. This implies {y, 2z} — « and so, dz(y) <2 or dz(z) <2, a
contradiction.

Case 3. Suppose that ¢c=5 and r = 2.

Then D is 4-regular and o(H) = 2. Furthermore, inequality (1) implies k(D) > 3.
Let Vll = {131,.702},‘/2, = {y17y2}an = {ul’u2}7w = {0171}2}’ and VSI = {w1’w2}'
Suppose that there exists a separating set S of D with |S| = 3. Let Dy, D,,..., D,
be the strong components of D — S such that D; ~ D; for 1 < ¢ < j < t. Then
we can assume, without loss of generality, that |V (D;)| < 3. If there exists a vertex
r € V(D) with dp () = 0, then dp(x) < 3, a contradiction. Otherwise, D, is
a l-regular tournament. Assume, without loss of generality, that D; is the 3-cycle
ziyrurzy. It follows that S — V(D;) and § C VJ U VY, say S = {w,ws,v1}.
Hence, there remain the two cases that Dy = vy and Dj is, without loss of generality,
the 3-cycle @aysusae and V(Ds) = {@a,y2,us,va}. In the first case, we observe
that V(D3;) — S and we arrive at the two complementary cycles Cj = vjz1y2v;
and wyY1uswou V2w . In the second case we assume, without loss of generality,
that ug — vy — {®3,92} and then zo — y,. This implies v — {w;, w2} and
Y2 = ({ua} US). If 9 — uy, then us — v; and we arrive at the two complementary
cycles C% = v1z1upv; and wy Y1 ZoyswatyVawy. If ug — 29, then zy — vy and we arrive
at the two complementary cycles Cf = v1y129v; and w21 UsVaWally Yow; .

Consequently, it remains the case that (D) > 4, and thus x(H) > 1.

Firstly, assume that H has a cycle-factor. Let C,C%,...,C} be a minimal cycle-
factor with the properties described in Theorem 2.13. If ¢ = 1, then H has the
Hamiltonian cycle C{ and so V(D) = V(C3)UV(C}). If not, then |[V(H)| = 7 implies
t = 2. Because of |V*| < 2, it follows from Theorem 2.13 that there is at most one
arc from C} to C. Let Vi = {x1},Va = {1}, Va = {w1 }, Vi = {v1, v}, V5 = {w1, w2},
C3 = xaypusxe, and, without loss of generality, C] a 3-cycle and C a 4-cycle. If C]
contains at least two vertices of {x1,y1,u1}, then it follows that

> dy(z) >3+ (11-1) =13,
z€V(CY)

a contradiction to the 4-regularity of D. It remains, without loss of generality, the
case that C] = zyvywiz; and C) = yjugvswsy;. According to Theorem 2.13, there
only exists the arc voz; from C to C]. Thus, the 4-regularity of D implies C5 ~ CY,
C4 ~ {ya,us}, and y; ~ C;. Consequently, we have the two complementary cycles
Y1Z201Y1 and Ui VaWaYaUs W1 T1U;
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Secondly, assume that H has no cycle-factor. Then, with respect to Lemma
2.12, the vertex set V(H) can be partitioned into subsets Y, Z, Ry, Ry such that
Ry~ Y, (RiUY)~ Ry, |Y| > |Z|, and Y is an independent set. Since x(H) > 1
and o(H) = 2, we see that 1 = |Z] < [Y] = 2. Let Vi = {1 },Voa = {m}, V3 =
{u1}, Vi = {v1,v12}, Vs = {w1,ws}, C3 = z2y2uszs, and, without loss of generality,
Y = V;. Since D is 4-regular, we see that 67 (H),d (H) > 1 and df(z),dg(z) > 2
for x € {z1,y1,u1}.

Subcase 3.1. Suppose that Z C Vi, say Z = {v1 }.

It is easy to see that 1 < |Ry|,|R2| < 2 is impossible. Therefore, it remains the
case that, without loss of generality, Ry = 0 and Ry = {1, y1,u1,v2}. Because of
Y — Ry, it follows that V(C3) — V5. Furthermore, v; — V5 = {wy,w;} and v, has
at least one positive neighbor in R,, say vo — x;. Assume, without loss of generality,
that y; — ;.

Subcase 3.1.1. Suppose that u; — ;.

Then @y — {y1,v1}. If vy — vy and, without loss of generality, y; — u», then
there exists the 3-cycle C4 = vjwiuiv; and the complementary cycle of length 7
in D: weva1y1us®alypwy. Otherwise, v; — wy and thus, uy — vy. If, without
loss of generality, v — ug, then there exists the 3-cycle C§ = viwiziv; and the
complementary cycle of length 7 in D: way;ui VatsTayaws.

Subcase 3.1.2. Suppose that x; — u;.

Then u; — {vy,ve}. If 21 — v; and, without loss of generality, vs — wus, then
there exists the 3-cycle Ci; = wwiziv; and the complementary cycle
Wal U VU TaYawy Of length 7 in D. Otherwise, v; — z; and thus, ;1 — y;. If]
without loss of generality, y1 — u2, then there exists the 3-cycle C% = vjwyu v, and
the complementary cycle wavsx1y;UsTay2ws of length 7 in D.

Subcase 3.2. Suppose that Z C V1 UV, U V3, say Z = {x1}.

We can assume, without loss of generality, that |R;| < 2.

Subcase 3.2.1. Suppose that |Ry| = 2.

Then we can assume, without loss of generality, that Ry = {u;,v1} and Ry =
{y1,v2} such that v; — wuy, y1 — vy and {y1,v2} — &1 — {us,v:i}. This implies
vy = V(C3) = v1. If wy — @y, then there exists the 3-cycle C§ = zyuwiz; and
the complementary cycle viwsyivausxaysvy of length 7 in D. If 1 — wy, then there
exists the 3-cycle C§ = zywyy121 and the complementary cycle vyuwavatszayov; of
length 7 in D.

Subcase 3.2.2. Suppose that |R;| = 1.

Then we can assume, without loss of generality, that Ry = {v1} and Ry =
{u1,y1,v2} such that 21 — v;. If we assume, without loss of generality, that y; — u,
then it follows that u; — {z1, v2, z2,y2} and V(C3) — vy.

Subcase 3.2.2.1. Suppose that vy — y;.

Then y; — {1, 2, us}.

If &y — vy, then vy — V(C3), 2 — {w1, w2}, and we can assume, without loss
of generality, that us — w;. Now there exists the 3-cycle C§ = zjv1y12; and the
complementary cycle uswiu; Tawsvaysus of length 7 in D.

If v — 21, then we can assume, without loss of generality, that ;7 — w;. Now
there exists the 3-cycleCh = zywyva2; and the complementary cycle vy way; U1 Tayauavy



COMPLEMENTARY CYCLES IN TOURNAMENTS 127

of length 7 in D.

Subcase 3.2.2.2. Suppose that y; — vs.

Then vy — z; and v, — V(C3).

If 21 - wy or & — wsy, say 1 — wi, then there exists the 3-cycle Cf =
riwiuyxr; and the complementary cycle viwayvazaysusvy of length 7 in D. Oth-
erwise, {wy,ws} — x1. This implies V(C3) — {wy, w2}, 21 — y1 and thus, y; —
{22, us}. Hence, there exists the 3-cycle C4 = zyviuiz; and the complementary cycle
U2W1Y1 T2WaV2YaUsy Of length 7 in D.

Subcase 3.2.3. Suppose that |R;| = 0.

Then Ry = {u1,y1,v1,v2} and we can assume, without loss of generality, that
y1 — up. Since Y = {wi,ws} — Ry, we deduce that Z = {z;} — {w;,ws} and
V(C3) = {wy,wa}.

Subcase 3.2.3.1. Suppose that vy — uy.

This implies vy — {x1, s, ys,va}. Furthermore, there exists an arc from vy to
Cs, say vy — y2. Because of dg(z;1) > 2, we conclude that y; — z; or v; — x; or
Vg — 1.

If y; — =1, then there exists the 3-cycle C§ = zjw;y12; and the complementary
cycle wyviuvayrusTrws of length 7 in D.

If v; — @, then there exists the 3-cycle C§ = zjwyvi2; and the complementary
cycle wyyugvayrusowy of length 7 in D.

If vo» — z; and y; — vy, then there exists the 3-cycle Cj = zjwivaz; and
the complementary cycle wayiviuiysuszows of length 7 in D. If vy — x; and
v; — Y1, then there exists the 3-cycle C} = zjwivexy and the complementary cycle
WaV1Y1 U1 YaUsTowsy Of length 7 in D.

Subcase 3.2.3.2. Suppose that u; — vy and vy — uy.

This implies u; — {z1, 22,y2}. Furthermore, there exists an arc from v; to Cj as
well as an arc from v, to Cs, say v; — y2 and vy — y». Because of dg(z1) > 2, we
conclude that y; — z; or v; = 1 or v9 — 1.

If y; — @4, then there exists the 3-cycle C§ = zywiy12; and the complementary
cycle wyvauv1YrusTrwo of length 7 in D.

If vy — =1, then there exists the 3-cycle C§ = zjwivaz; and the complementary
cycle wyyyuv1Ysusaws of length 7 in D.

If vy —» z; and vy — y;, then there exists the 3-cycle Cj = zjwivi2; and
the complementary cycle wyvoyiuiysuszrw, of length 7 in D. If v; — x; and
Y1 — vq, then there exists the 3-cycle Cf = zywyviz; and the complementary cycle
WaY1V2U1 YaUsTowsy Of length 7 in D.

Subcase 3.2.3.3. Suppose that u; — vy and u; — vs.

Then there exists an arc from v; to C3 as well as an arc from vy to Cs, say v1 — ¥
and vy — ¥s.

If v; — @, then there exists the 3-cycle C§ = zjwyvi2; and the complementary
cycle wyyugvayrusowy of length 7 in D.

If vy — =1, then there exists the 3-cycle C§ = zjwivaz; and the complementary
cycle wyyyuv1Ysusaws of length 7 in D.

In the remaining case that 1 — {v1,va}, we see that {ui,y1} — 1, v1 — y1,
and vy, — y1. Furthermore, we have {v;,vo} — C3 and {y»,us} — ;. Now there
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exists the 3-cycle C% = uswivius and the complementary cycle z1wayiugvaxayaz; of
length 7 in D.

Case 4. Suppose that ¢ =4 and r = 4.

Then D is 6-regular, and inequality (1) yields k(D) > 4. Suppose that there exists
a separating set S of D with |S| = 4. Let Dy, Ds,...,D; be the strong components
of D — S such that D; ~ D; for 1 < i < j < t. Then we can assume, without
loss of generality, that [V(D;)| < |V(D,)| and |V(D;)| < 6. If there exists a vertex
r € V(Dy) with dp () < 1, then dj(x) < 5, a contradiction. If |V(Dy)| < 5,
then, since H is 4-partite, there exists a vertex z € V(D;) with dp, (z) < 1, a
contradiction. Consequently, |V(Dy)| = [V(D,)| = 6, 67 (D1) > 2, A~(Dy) <
3, and there is at most one vertex v € V(D;) such that dp (v) = 3. If D, is
exactly 4-partite, then H[S] is at least 2-partite, and thus, there exists a vertex
w € V(D) such that dy(w) < 5, a contradiction. Hence, D; as well as D, are
3-partite such that dp () = df, (¢) = 2 for i = 1,2 and for each # € V(D;), and
S consists of one partite set. In addition, S — V(D;) ~ V(D;) — S. Now let
Vi = {1, 20, w3, v}, Vi = {u, us, us, ua}, Vi = {v1, 02, 03,04}, Vi = {w1, ws, w3, ws},
and assume, without loss of generality, that S = V/, V(D) = {u1, us, v1,ve, w1, ws },
V(Ds) = {us, ug,vs,vs,ws, ws}, and u; — v;. We distinguish firstly the two cases
that wsz — ug or wz — vz, and secondly the two cases that us — vy or us — ws.

If wy — us and us — va, then wy — ug (or, without loss of generality, wy — v4).
In this situation we arrive at the two desired complementary cycles:

T1W1V4271 and ToU1V1W3U3IT3UV2W4U4 T4 W9 V3T OT
(zrwivsz;  and  ZaU V1 W3UZT3ULVaWAVsT4WUL TS ).

If wy — ug and, without loss of generality, us — ws, then ws — w4 (or, without
loss of generality, ws — v4). Now we have the desired complementary cycles

T1W1V4271 and ToU1V1W3U3IT3UWV3T4V2W4U4T9 OT
(zrwivsz;  and Tl V1 W3UZT3UsWaUaT4V2WVT2 ).

If wy — vz and uy — vy, then wy — vy (or, without loss of generality, ws — uq).
Now we have the desired complementary cycles

T1Wi1U3Ty and ToU1V1W3V3T3UVW4V4T4WoU4 L9 OT
(zrwiuge;  and  ZauV1W3V3T3ULVWAULT AW VAT ).

If w3 — v3 and, without loss of generality, us — ws, then wy — vy (or, without
loss of generality, ws — u4). Now we have the desired complementary cycles

T1W1U3T1 and ToU1V1W3V3L3UWoU4LL4V2W4V4T9 OT
(zrwiugr;  and  ZauV1W3V3T3ULWAVAT4VaWAULT ).
Altogether, we see that D contains two complementary cycles of length 3 and

|V(D)| — 3 = 13, when x(D) = 4. Therefore, we investigate next the case that
k(D) > 5, that means that x(H) > 2.
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Firstly, assume that H has a cycle-factor. Let C1,C%,...,C; be a minimal cycle-
factor with the properties described in Theorem 2.13. If ¢ = 1, then H has the
Hamiltonian cycle C} and so V(D) = V(C3)UV(C}). If not, then, because of |[V*| <
4, it follows from Theorem 2.13 that there are at most four arcs from V(H) — V(C)
to C7. Furthermore, if [V*NV(C})| =1 or |[V*N(V(H) — V(C}))| = 1, then we
arrive at the contradiction x(H) < 1. Hence, |V*| = 4 and |V*NV(C})| = 2 and
the remaining three parite sets of H have cardinality three. If |V/(C])| < 5, then it
follows from Theorem 2.13 that d}(w) > 7 for w € V* N V(C}), a contradiction to
the 6-regularity of D. If |V(C})| = 6 and C] induces a 4-parite tournament, then we
obtain

Y die) = Y dD[VC’ x) +d*(C}, H - V(CY))

zeV(CY) z€V(Cy)
> 13+ (32—4) =41,

a contradiction to the 6-regularity of D. The same holds true, if C] induces a 3-
partite tournament. If |V(C])| = 7 and C] induces a 4-parite tournament, then we
obtain

E dy(z) = Z dD[V e ) +d"(C1, H = V(CY))
zeV(CY) z€V(Cy)
> 18+ (32 —4) = 46,

or

Y. df(2) > dD[VC’ x) +d*(CL, H = V(CY))

zev(C) zeV(CY)
> 17+ (34— 4) =47,

a contradiction to the 6-regularity of D. The same holds true, if C] induces a 3-
partite tournament. If [V(C{)| > 8, then ¢t = 2 and |V(C})| < 5. Hence, it follows
from Theorem 2.13 that dy(w) > 7 for w € V* N V(C}), a contradiction to the
6-regularity of D.

Secondly, assume that H has no cycle-factor. Then, with respect to Lemma
2.12, the vertex set V(H) can be partitioned into subsets Y, Z, Ry, Ry such that
Ri~Y,(RiUY)~ Ry, |Y| > |Z|, and Y is an independent set. Since x(H) > 2
and a(H) = 4, we see that 2 < |Z]| < [Y] < 4. Let Vi = {z1,29,23,}, V2 =
{u1,us,us}, Vs = {v1,ve,vs, }, Va = {wy, wa, w3, wya}, and C3 = z4uqvyxy. Since D is
6-regular, we have 67(H),6(H) > 3 and dj;(z),dg(z) > 4 forallz € ViU VL U V;.

Subcase 4.1. Suppose that |Z| =2 and |Y| = 3.

It is easy to see that 0 < |R;|,|Ra| < 2 is impossible. If |Ry| = 3, then 6~ (H) > 3
implies that H[R;] is a 3-ycle. Thus, dz () = 3 for all € Ry, a contradiction to the
fact that R; contains a vertex of V4 UV, U V3. Similarly, one can show that |Rs| = 3
is not possible. Therefore, it remains the case that |R;| = |Ry| = 4.

Firstly, let Y = {wy, w2, ws}. This leads to the contradiction 15 < 3" g, dp(z) <
14. Secondly, assume, without loss of generality, that Y = V. This implies that
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HI[R,] is 3-partite. If R; contains at least three vertices of Vj, then we obtain the
contradiction 12 < Y g, dp(z) < 11. If Ry contains at most two vertices of Vi,
then we obtain the contradiction 14 < 3, g, dp(z) < 13.

Subcase 4.2. Suppose that |Z| =2 and |Y| =4.

This implies that Y = V. The cases 0 < |Ry|,|Ra| < 3 easily lead to a contra-
diction. However, |Ry|,|Ry| > 4 is also impossible, since |V (H)| = 13.

Subcase 4.3. Suppose that |Z| =3, |Y| =4, and |R;|,|Rs| > 1.

This implies Y = Vj. The cases 1 < |Ry|, |Ra| < 2 easily lead to a contradiction.
It remain the cases that H[R;] and H[R,] are 3-cycles. But then we obtain the
contradiction 12 < Y, cp, dp(z) < 11.

Subcase 4.4. Suppose that |Z]| = 3, |Y| = 4, and assume, without loss of gener-
ality, that |Ry| = 0.

This implies Y = Vi, Z =Y — Ry, V(C3) = Y, and 61 (H[R,]) > 1.

Subcase 4.4.1. Suppose that Z be an independent set, say Z = V7.

Then H[Ry] is bipartite and every vertex of Ry has at least one positive neighbor in
V1. Furthermore, there are at least 3 vertices ay, as, a3 in Rs such that d}}[m](ai) =1
fori=1,2,3.

Subcase 4.4.1.1. Suppose that dj, (u;) = 1 for i =1,2,3.

This implies Vo = {u1, uz,uz} — Vi = Z. If we assume, without loss of generality,
that u; — v — g, then we deduce that {ve,v3} — uy. If we assume next, without
loss of generality, that us — vy, then we deduce that vs — wuy. It follows that
Vo — {x4,v4}. Since v; has at least one positive neighbor in Vi, say z;, we now
choose the 3-cycle Cf = zywyvi2; instead of Cs, and we have the complementary
cycle of length 13 in D: wyvst T4UsV4W3V3UsToWAUZT3Ws.

Subcase 4.4.1.2. Suppose that dj,.(u;) = 1 for i = 1,2 and djyjp,(v1) = 1.

This implies {uy,us,v1} = V1 = Z.

Firstly, we assume that v; — ;. It follows that {us, u3} — v; and thus {vy, v} —
ug. If we assume next, without loss of generality, that u; — v, then we deduce that
vz — up. It follows that u; — x4. Since uz has at least one positive neighbor in V7,
say 1, we now choose the 3-cycle C} = zjwjusz; instead of C3, and we have the
complementary cycle wyvzu) T4UsV4W3VUT2 W4V T3we Of length 13 in D.

The remaining case that v; — ug is analogous to the last case.

Subcase 4.4.2. Suppose that H[Z] is 3-partite, say Z = {z1,u1,v1}.

Then H[R,] is 2-regular and 3-partite such that Ry ~ Z and Ry ~ V(C3). Now
we assume, without loss of generality, that u, — vy. If u3 — vz, then we choose
the 3-cycle C§ = wjwizsu;, and we have the complementary cycle of length 13 in
D: watgvaT4UusVaw3uzv3TIWa T3V W If ug — x5, then we choose the 3-cycle C% =
uiwiTouy, and we have the complementary cycle watsVs UV W3U3T3V1W V3T Wy Of
length 13 in D.

Subcase 4.4.3. Suppose that H[Z] is 2-partite, say Z = {x1,z2,u1 }.

Then djp,(23) > 3, djjip, (ui) > 2 for i = 1,2, and djjp, (v;) > 1 for i = 1,2,3.

Subcase 4.4.3.1. Suppose that z3 — {v1, v, v3}.

Assume, without loss of generality, that {v;,v2} — us and vy — u3. It follows that
uy — {x3,v3}. Furthermore, we can assume, without loss of generality, that uz — v;.
This leads to {v1,v3} = Z. In addition, v, has at least one positive neighbor in Cs,
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say vy — 4. Since ug has at least one positive neighbor in Z, say x1, there exists the
3-cycle C% = zywyuzx; and the complementary cycle wo 3224 UsVsW3aUV3T2W 4V U W
of length 13 in D.

Subcase 4.4.3.2. Suppose that vy — x5 — {v1,ve,us}.

Assume, without loss of generality, that us — v;. It follows that v; — us.

The case vy — ug implies uz — {vs, 23}, {v1,us} ~ Z, and {z3, v1, us} ~ V(Cs).
Since uy has at least one positive neighbor in Z, say x;, there is the 3-cycle C§ =
r1wiusx; and the complementary cycle wav3T3usvsT4W3VaU3T2W4V1 U Wy Of length 13
in D.

The case u3 — vy implies vo — uz, and thus, uy — vs. Consequently, we see
that {vy, v, u2} ~ (Z U V(Cs)). Since vg has at least two positive neighbors in Z,
say vz — 1, there exists the 3-cycle C§ = z;wivsz; and the complementary cycle
WalUzVaT4UgVsW3T3Us ToW4V1 Uy Wy Of length 13 in D.

Subcase 4.4.3.3. Suppose that {vy,v3} = x5 = {v1, us, us}.

It follows that z3 — {uy,u4,v4}. Assume, without loss of generality, that us — v,.

The case uy — vy implies vy = {z1, 22, U1, us, Ta, us }, us — {1, T, V2, V3, Ta, Vs },
and vy — uy. Hence, there is the 3-cycle C} = wjwivou; and the complementary
cycle wyv3T3Us VT W3ULV1 T WaU3T2we Of length 13 in D.

The case vy — up implies us — {x1, 2,3, 24, uq}. If we assume, without loss of
generality, that us — vs, then we deduce that v; ~ (ZUV(C3)). Since v, has at least
one positive neighbor in Cs, say ve — uy, there exists the 3-cycle C§ = wjwizsuy,
and the complementary cycle wavUs VT4 W3U3V3T1 W4V U2Z2wo Of length 13 in D.

Case 5. Suppose that ¢ =4 and r = 2.

This implies that D is 3-regular and «(H) = 2. Let now V| = {1,122}, V§ =
{y1, 92}, V§ = {w1,u2}, V] = {v1,v2}, and C3 = wayrusws. Since D is 3-regular, we
see that df;(z),dg(z) > 1 for x € {x1,y1,u1}.

Subcase 5.1. Assume that H is not strong, and let Dy, D,, ..., D; be the strong
components of H such that D; ~ D; for 1 <i < j <.

Subcase 5.1.1. Suppose that |[V(D;)| =1for 1 <i<t.

Then, because of df;(z),dgz(x) > 1 for € {x1,y1,u1}, we deduce, without loss
of generality, that D; = vy, Ds = vy, Dy = z1, D3 = y;, and Dy = uy. This
implies v, = V(C3) — vy and u; ~ V(C3) ~ x1, and hence D contains the 3-cycle
C4 = yaz1u1y2 and the complementary cycle usxavyy;vaus.

Subcase 5.1.2. Suppose that |V(D,)| =3 and |V(D,)| = |V(D3)| = 1.

Then, because of df;(z),dgz(x) > 1 for € {x1,y1,u}, we deduce, without loss
of generality, that D; = vy, D3 = vs, and D, is the 3-cycle z1y;uyx;. This implies
Vg — V(Cg) — V1.

If x9 — y;, then y; — wy and uy — x3. This yields us = 3 — Y2 — u;.
Therefore, D contains the 3-cycle C% = wzyyjusxs and the complementary cycle
Y2U1U1T1V2Y 2.

If y1 — w9, then 29y — u; and uy — y;. This yields u; — y» — 1 — us. But
now we observe that D is isomorphic to D4, in Example 2.4.

Subcase 5.1.3. Suppose that |V(D;)| =3 or |V(D3)| =3, say |V(Dy)| = 3.

Then D is a 3-cycle and, without loss of generality, D3 = vs.
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Subcase 5.1.3.1. Suppose that Dy = v;.

Assume, without loss of generality, that D; consists of the 3-cycle z1y,uyz;. This
implies {v1,v2} = V(C3) ~ V(D1), and hence D contains the 3-cycle C§ = yaz1v1Y2
and the complementary cycle usxoyiuivaous.

Subcase 5.1.3.2. Suppose, without loss of generality, that Dy = u;.

Assume, without loss of generality, that D; consists of the 3-cycle x;y;vy2;. This
implies {uj,v2} ~ V(C3) ~ {z1,y1}. If us — vy, then D contains the 3-cycle
C4 = zay1u1z2 and the complementary cycle yausv121v2ys.

If v1 — wuy, then D contains the 3-cycle C% = uyyivius and the complementary
cycle zoys iUV,

Subcase 5.1.4. Suppose that |V(D;)| =4 or |[V(D2)| =4, say |V(Dy)| = 4.

This implies, without loss of generality, that Dy = vy, and D; is a strong tour-
nament. It follows that v — V(Cs) and there exists a 3-cycle Cj in Dy such that
vy € V(Cj). Assume, without loss of generality, that u; is not a vertex of C3. Since
u; has at least one negative neighbor in Cj, say y,, we have the complementary cycle
UaT2Y2UUals 10 D.

Subcase 5.2. Assume that H is strong.

If H has a cycle-factor, then, because of |V(H)| < 5, it must be a Hamiltonian
cycle C5 and so V(D) = V(C3) U V(Cs).

Suppose now that H has no cycle-factor. Then, with respect to Lemma 2.12,
the vertex set V(H) can be partitioned into subsets Y, Z, Ry, Ry such that Ry ~ Y,
(RiUY) ~ Ry, |Y| > |Z|, and Y is an independent set. Since a(H) = 2, we see that
1=|Z] <|Y] =2, and thus Y = {v;,vs}. We assume, without loss of generality,
that Z = {u,} and |R;| < |Rs|.

Subcase 5.2.1. Suppose that |Ri| = |Ry| such that, without loss of generality,
Ry ={z1} and Ry = {y1 }.

This implies y; — u; — @1, y1 ~ V(C3) ~ x1, and we can assume, without loss
of generality, that vo — uy — vy.

Subcase 5.2.1.1. Assume that yo — vs.

If vy — wy, then D contains the 3-cycle C§ = ujzv1u; and the complementary
cycle Yovayrusays. If uy — vy, then D contains the 3-cycle C = ujvyy;u; and the
complementary cycle vousxaysxivs.

Subcase 5.2.1.2. Assume that vo — y, and u; — vy.

This implies {uy, 22} — v and thus {xs, y2} — u;. Hence, D contains the 3-cycle
C4 = vausx1v2 and the complementary cycle yau3v1y122Ys.

Subcase 5.2.1.3. Assume that vo — 5, v1 — uy, and ys — vy.

This implies {u;,za3} — v and v; = 2 — u; — Y. Hence, D contains the
3-cycle C% = uswyvouy and the complementary cycle yav1y122u1ys.

Subcase 5.2.1.4. Assume that ve — vz, v1 — uy, and vy — ys.

This implies {uy, s} — vy and yo — w3 — x9 — v;. Altogether, we have

{vi,v2} = {y1, 02} = {ur, w2} = {z1, 22} = {v1, 02},

Y1 — Ty — Yo — 1 — Y1, and v; — u; — vs — uy — v;. Consequently, D is
isomorphic to Dj , in Example 2.5.
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Subcase 5.2.2. Suppose that |R;| = 0 and Ry = {z1,y1} such that, without loss
of generality, x; — ;.

This implies u; — {vi,v2} and y; — {uy, us, xs}.

Subcase 5.2.2.1. Assume that u; — ;.

This implies {z2,y2} — w1, 1 — {y2,u2}, and thus uy — {v1,v2}. Then D
contains the 3-cycle C} = ujviyiuy. If 22 — vy, then D contains the complementary
cycle vyz1Ysusavy. If v9 — x9, then y, — vy, and D contains the complementary
cycle vax1UsTayavs.

Subcase 5.2.2.2. Assume that z; — u; and us — v; Or us — v, S&Y Uy —> V1.

In this case, D contains the 3-cycle C§ = ujvsziu; and the complementary cycle
U2V1Y1T2Y2U2.

Subcase 5.2.2.3. In the remaining case that z; — wuy and {vy,v2} — us, we obtain
the contradiction dp(ug) > 4. O

Since Dy, and Dj, contain two complementary cycles of length 4, Theorem 3.1
immediately leads to the following result.

Corollary 3.2 Let D be a regular c-partite tournament with ¢ > 4 and |V(D)| > 6.
Then D is cycle complementary unless D is isomorphic to Tr.

As an application of Corollary 3.2, the author [12] recently derived the following
result.

Theorem 3.3 (Volkmann [12] 2004) FEach regular multipartite tournament D
of order |V(D)| > 8 is cycle complementary.

In [13], Volkmann constructed an example showing that Yeo’s Conjecture 2.1 is
not true in general for ¢ = 4 and regular 4-partite tournaments with two vertices
in each partite set. However, in all the remaining cases Volkmann [13] could prove
Conjecture 2.1 for t = 4.
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