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Abstract

For any prime p and any r we present an improved upper bound on the
size of the smallest regular map of valence 3 and face length p whose
planar width is larger than r.

1 Introduction

Regular maps on orientable surfaces are graph embeddings with the largest possible
“degree” of orientation-preserving symmetry. In this paper we focus on regular maps
with “large planar neighborhood” of each vertex. In what follows we first explain
the basic concepts.

A (clockwise) oriented 2-manifold without boundary will be simply called a sur-
face. Any cellular decomposition of a surface & will be refered to as a map; the
0-cells, 1-cells and 2-cells of the manifold are the vertices, edges, and faces of the
map. The union of all 0-cells and 1-cells forms the underlying graph of M. We will
restrict ourselves to maps whose underlying graphs have no loops, multiple edges,
and semi-edges. A dart is an edge endowed with a direction; D(M) will denote the
set of all darts of a map M.

A permutation of D(M) which extends to an orientation preserving self-homeo-
morphism of the supporting surface, respecting incidence between vertices, darts and
faces, is an automorphism of M. The collection of all automorphisms of M forms
the automorphism group Aut(M); it acts freely on D(M). A map M is regular if
the automorphism group acts regularly on D(M). In a regular map, all faces are
bounded by closed walks of the same length (say m) and all vertices have the same
valence (say n); we then speak about a map of type {m,n}. In order to avoid trivial
cases we will assume throughout that m,n > 3.
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Literature on regular maps is abundant, see e.g. [6, 8] and references therein.
Besides central topics such as classification of regular maps with a given graph, or
a given automorphism group, or on a given surface, researchers have also studied
various special classes and properties of regular maps. Our aim is to discuss regular
maps M with planar width larger than r, that is, when every non-contractible simple
closed curve on the supporting surface of M intersects the underlying graph of M in
more than r points.

Given a triple m,n,r such that 1/m + 1/n < 1/2, the existence of (an infinite
number of) regular maps of type {m, n} with planar width larger than r follows, for
example, from [2, 7]. However, the proofs do not give reasonable upper bounds on
the number of darts of the corresponding regular maps. Recently, it was shown in
[9] that the smallest number of darts d(m,n,r) of a regular map of type {m,n} and
of planar width larger than r satisfies

5(17’1,, n, 7‘) < 272T(m+n)(mn)3 ) (1)

In the last section of [9] the author stated that (1) is clearly far from the best
possible bound and suggested several ways of possible improvements. (In fact, the
author’s intention was to show that an easily computable upper bound does exist in
the first place.) The aim of this paper is to improve this bound for regular maps of
type {p, 3} for prime numbers p > 11.

Theorem 1 For any prime number p > 11 and any r > 1 we have
d(p,3,7) < 2094rp"

To achieve this goal it turns out to be of advantage to represent automorphism
groups of regular maps as quotients of linear representations of triangle groups. We
will briefly outline the basic facts.

It is well known that the automorphism group of each regular map M of type
{m,n} can be presented in the form

Aut(M) = (p,o| p" = o™ = (0p)* =... =1), (2)

where the exponents are true orders of the corresponding elements. The generators
p and ¢ may be chosen by fixing a corner at a vertex v and letting p be the automor-
phism of M that clockwise cyclically permute the successive darts emanating from v
and letting o be the automorphism that clockwise cyclically permute the edges that
are successive sides of the face corresponding to the fixed corner.

First, note that the regular action of Aut(M) on D(M) in a regular map M allows
us to identify D(M) with Aut(M) in an obvious way. Therefore, any abstract group

G=(zylz"=y"=(yz)’=...=1) (3)

can be viewed as the automorphism group of a regular map M = M(G;z,y) whose
darts are elements of G and whose edges, vertices, and faces are (left) cosets of the
subgroups (yx), (z) and (y); their incidence is given by non-empty intersection. We
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will refer to the map M(G;z,y) as to the generic regular map associated with the
presentation (3).

When the presentation (3) contains no additional independent relations then we
have a triangle group

T(2,m,n) = (z,y| " = y™ = (yx)* = 1).

The generic regular map M(T(2,m,n);z,y) is the wuniversal tessellation
U(m,n) of a simply connected surface — the sphere, the Euclidean plane, or the
hyperbolic plane, depending on whether 1/2 — 1/m — 1/n is negative, zero, or posi-
tive.

It is rather difficult to work with triangle groups just on the basis of their pre-
sentations. If 1/m 4 1/n < 1/2 then the triangle group T(2,m,n) is a group of
hyperbolic isometries leaving the universal tessellation U(m,n) invariant, and so
there is a geometric representation of T'(2,m,n). It can be shown [5] that, with
respect to a suitable coordinate system in the hyperboloidal model of a hyperbolic
plane, the two rotations x,y can be represented by the following two matrices in
SL3(Z[¢,1]), where = 2 cos(m/m) and § = 2 cos(m/n):

-1 £ 0 -1 0 7
X=| ¢ ¢&-10], Y = & 1 0 |. (4)
no ng 1 -n 0 -1

The assignment z — X, y — Y induces a faithful representation of 7'(2,m,n) in
SL(Z[¢, n)).

The proof of the bound (1) in [9] is based on reducing the above representation
to a homomorphism T'(2,m,n) — SL3(Z;[¢,n]) for a suitable positive integer k. In
order to obtain an improvement over (1) for maps of type {p,3} we need to study in
some detail the minimal polynomials of £ = 2 cos(w/n); this is done in Section 3 and
4. The results obtained there are then applied in Section 5 to establish an improved
bound on §(p, 3,r) for prime numbers p > 11.

2 The minimal polynomial of 2(;05%J

For any integer k£ > 3 we denote by k™ the set of all primitive roots of unity of the
form cos(2nd/k) + isin(2wd/k) where 1 < d < k/2 and (d, k) = 1, and let

Qp(z) = H (z—(w+w™).

wekt

The polynomial ®;(z) is monic and irreducible of degree ¢(k)/2, with integer coef-
ficients, whose roots have the form 2 cos(2wd/k), cf. [4]. The function (k) is the
Euler function giving the number of positive integers smaller than & and coprime
with k. If we take d = 1 and k = 2n we obtain ®,,(z), the minimal polynomial
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of 2cos(m/n). We will compute this minimal polynomial using modified Chebyshev
polynomials
P,(z) = 2 cos(n arccos g) ,

for positive integers n and real © € (—2,2). The degree of P,(x) is n and the leading
coeflicient is 1. In particular, for n > 1 (using P;(z) = z) we have

Posa(e) + Pos (&) = 2Pa(e) (5)

It can be shown that for all £ > 0 we have

L£/2] _ ok (kg
Pi(z) = > bja"™¥  where b; = (—1)3k_< _ ) . (6)
=0 —J J

The following Theorem shows the relation between polynomials @, (z) and Py(z),
cf. [3].

Theorem 2 Let ®,(x) be the minimal polynomial of 2 cos(2m/n) and let Py(x) de-
note the s-th modified Chebyshev polynomial.
a) If n =2s+ 1 is odd, then

Poi(z) — Po(z) = ll_[‘l’d(l‘) 7 (7)
and
b) if n = 2s is even, then
Poi(z) = Pooa(2) = ll_[‘l’d(l‘) : (8)

For n odd, the polynomials ®,(x) and ®,,(x) are very similar. They differ only
in the sign of every other coefficient. This is explained in the next Theorem and in
its proof.

Theorem 3 Let n be odd and let n > 3 (so that p(n) = ¢(2n)) and let @, (x) =
fﬁ;}/? e, Pop(z) = Zfi%)ﬂ cx". Then

o(n

&= (-, )
Proof. If n = 2s+1is odd, the p(n)/2 roots of the polynomial ®,(x) are 2 cos(2mk/n)
for 1 <k < s and (k,n) = 1. The roots of the polynomial ®,,(x) are 2 cos(27k'/2n)
= 2cos(mk'/n) for 1 < k' < nand (K',2n) = 1; their number is ¢(2n)/2 = ¢(n)/2. Tt
is easy to prove that for every k, 1 < k < s, we have 2cos(nk'/n) = —2cos(27k/n),
where &' =n — 2k and 1 < k' < n. We have to show that for every k the following
holds: if (n,k) =1 then (2n,k") = 1. Clearly, (2n,%') = (2n,n — 2k) = (4k,n — 2k).
If n is odd then n — 2k is also odd, so (n — 2k,4) = 1 and (n,k) = (n — 2k, k) = L.
Therefore (4k,n — 2k) = 1 and (2n, k") = 1. In other words, the roots of ®,(z) and
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on) .
2

®,,(x) have opposite signs and ¢, = (—1) Cr. |

An explicit formula for the minimal polynomial ®,(z) for prime numbers p > 2
was presented in [1] without proof. We reproduce the formula here with a simple
proof.

Theorem 4 The minimal polynomial ®,(x) of 2 cos(2w/p) where p = 2s + 1 is an
odd prime has the form

By(2) = 3(~1)1F) <LTJ>$€7.

r=0 r
Proof. For the prime number p = 2s + 1 we obtain from the equation (7) that

_Pa() - Pe)

® = 1
(o) = 2D (10
With help of (5) it is a matter of routine to show that
Popi(w) = Py(w) = (¢ = 2)(1+ X_ Pi(x)) - (11)

i=1

If we realize that ®;(z) = x—2 and we substitute (11) onto (10) then we can observe
that ®,(z) =1+ X5, Pi(z). Every modified Chebyshev polynomial can be written
in the form (cf. (6))

s Li/2]

Byle) =143 > (~1y (i;j)xi—Zj. (12)

i=1 j=0 t—1J

We have to find the coefficient at z", so we put r = ¢ — 2j and replace j with %
This enables us to rewrite (12) in the form

@F(z)=1+gj§ij(—1)i? 2 <%>m

14+

i—r
2

where 0 < r < s and the second sum ranges over all ¢ such that r < ¢ < s,
¢ = r mod 2; moreover, if r = 0 then i # 0. Now we have to evaluate the coefficient

i—r 5 (iET . . . i
¢ = El(—l)TleT(%) at z”. To do this we use the substitution u = 3", so that

0<u<[*5"] and if 7 = 0 we have u # 0:

¢ = Z(—l)”?j; (u - T) = Z(—l)“(u * T) + (—1)”(“ e 1) .

U ” u u—1

For r > 1 there is a telescopic effect in the sum and we easily obtain

o=y ().

r
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For r = 0 we have to include the +1 term, and therefore

(7).

It follows that the minimal polynomial of 2 cos(2n/p) is

c0_1+2 (- = (-

0) = 30 (L3 ]

Corollary 1 The minimal polynomial ®o,(x) of 2cos(n/p) where p = 25+ 1 is an
odd prime has the form

(o) = (-0 (FH ) (13

=0

Proof. Since @ = s and we know the coefficients of the polynomial ®,(z) (see
Theorem 4) we can evaluate the coeflicients of the polynomial ®y,(z):

& = (1) (~)LF (Ls;_TJ) '

r

We have [557] = || mod 2 and [55°] + (s —7) = =S| + (s — r) mod 2,
where L“;Jr ]+ (s—r) =[] So the coefficients of the polynomial ®,,(z) have

the form
& = (~1)1= ’”(L ; J) | .

While ®,,(z) is irreducible over the integers, it may be of interest to note that
over Z, it reduces to a power of a linear polynomial.

Proposition 1 p In Z,[z], p =25+ 1 is prime, we have ®9p(x) = (z + 2)°.

Proof. In [1] is shown that ®,(z) = (z — 2)° =Y ;_,(—1)*" T( )25 "z". The relation
between coefficients of ®,(z) and ®y,(x) established in Theorem 3 projects onto Z,.
Therefore,

Ny S WERTE o MEST ST

=0
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3 The norm of the polynomial ®,,(z)

Let Z(x) denote the ring of polynomials in = with integer coeflicients. We define
the norm ||g(z)|| of a polynomial g(z) € Z(z) as the largest absolute value of all its
coefficients.

In what follows we estimate the norm of ®,,(z) for prime p > 11.

Theorem 5 Let p be a prime number, p > 11, and let ®y,(z) be a minimal polyno-
mial of 2 cos(m/p). The norm of ®y,(z) is bounded by

|| @, (z)]| < 0.316 - 1.2747 . (14)

Proof. By (13), we have to find r for which the coeflicient ¢, = (L%J) is the largest.
We first find the maximum r for which ¢, < ¢,41, or, equivalently,

(159) < (L529). )

If s +7 = 2t we obtain from (15) the inequality (3r — s+ 2)/((s — r)(r + 1)) < 0.
The solution is 0 < r < (s — 2)/3, which means that for even s + r the inequality
¢, < ¢pp1 holds up to r < (s — 2)/3.

For s + 7 = 2t + 1 we obtain from (15) that ¢, < ¢,4; for every odd s + 7. It

follows that we have to determine the largest r (such that s + r is even) for which

¢y < Cpyo, that is,
|_s+TrJ < Ls+;+2J
r “\r+2 )’

This is equivalent with the inequality (5r%+ 14r — s —2s+8)/((s—7)(r+2)(r+1)) <
0, and the largest r satisfying it has value ry = | =THvoeH10st9
coefficient is therefore c¢,,;o obtained for

3+,/5(s+1)2+4J )

|. The maximum

ro+2= |_ 5 )

with value

|_s+m+2J

Cro+2 = ( 2 ) .

To + 2

To facilitate further analysis we set
2
n= L#J and cn=ry+2; then c¢p42 = (n) . (17)
cn

With help of the formula for ry and using s = (p—1)/2 we find that n < 0.362p+2.086.
For approximation of (;) we use Stirling’s formula

2 (E)n<'<\/2 (2)n(1+ ! )
n e . ™n e 197 — 1 y
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which yields

(”) < 1+ 1271—1
cn 2mnc(l —c) - cen - (1 — c)(-en

From (16) and (17) we have

g 19 B |_3+\/5(Z+1)2+4J
¢= LS+T0+2J T 5e43+V/B(+1)2 +4
2 |_|. 5 .J

2

We need to work with reasonable bounds on ¢ in order to determine an upper
bound for (;L) It is easy to check that

2 2
% << —F/—/ .
Vo + 14 4 VE+1- 22

For s — oo both bounds approach 2/(v/5 + 1) ~ 0.62. To keep the value of ¢
approximately equal to 0.62 within the accuracy to two decimal places, we will find
the smallest s for which the number c fulfills the conditions 0.615 < ¢ < 0.624 and
0.376 < 1 — ¢ < 0.385. A routine verification shows that this is the case provided
that s > 481. Thus for every prime p = 2s + 1 > 963

n 1+ 4 =
— n—1
Cro+2 = < )
cn V27rn - 0.615 - 0.376 - 0.6150-615n . (0.3760.376n

so that .
1 + 12n—1

< 11
ro+2 = 5 T62n
Now by substituting for n and taking p = 967 (the nearest larger prime to 963) to

the fraction at left we obtain the announced bound for the norm of the polynomial
Dy ()

.1,048" if n =0.362p + 2.086.

|| @y, (2)]| < 0.316 - 1.2747, (18)

for every prime p > 967.

Finally, comparing (for example, with the help of the system Mathematica) the
norms of the polynomial ®,,(z) given by (13) with the bound (18) for primes p < 967
we conclude that the bound (18) is valid for each prime p > 11. O

4 Regular maps with large planar width

Recall that a map M on a compact surface S of positive genus has planar width larger
than r if every non-contractible simple closed curve on § intersects the underlying
graph of M in more than r points. Let 1/m + 1/n < 1/2 and let r be a positive
integer. Denote by S, the set of all non-identity elements u € T'(2,m,n) = (z,y| 2™ =
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y™ = (yz)? = 1) with the property that u can be expressed as a word of length at
most 7 in the symbols z,y. A representation ¥ : T(2,m,n) — H in a finite group
H will be said to be r-locally faithful if 9(u) # 1g for each u € S,.

The following two results were proved in [9]. The two concepts introduced above
are related by Proposition 2 of [9]. In the special case of maps of type {p,3} this
result can be reformulated as follows.

Proposition 2 Let r > 1 and let ¥ : T(2,p,3) — H be an epimorphism of an
infinite triangle group onto a finite group H. If 9 is an r(p — 1)-locally faithful
representation then the generic map M(H;9(x),9(y)) is of type {p, 3} and has planar
width larger than r.

For any f(z) € Z(z) let w(f), the width of f(z), be the number of non-zero
coeflicients of f(x).

If A e SL,(Z[¢)) is a matrix with entries A;; = A;;(€) € Z[¢], then the width
w(A) and the norm ||A]| of A are defined as the maximum of w(A;;(€)) and ||A;;(£)]],
respectively, taken over all indices 1 < 1¢,5 < g¢.

Theorem 6 Let Z[§] = Z(z)/(h(z)) where h(z) € Z(z) is a polynomial of degree
d > 0 with leading coefficient 1; let s = 1 + ||h(x)||. Assume that we have a faithful
(that is injective) representation ¥ : T(2,m,n) — SL,(Z[¢]) of the triangle group
T(2,m,n) = (z,y| 2™ = y™ = (yx)? = 1), where 1/m + 1/n < 1/2. Further, let
both matrices ¥(x) and I(y) have norm < t and width < w. Then, for any positive
integer r there exists an r-locally faithful representation of T(2,m,n) in a finite group
H such that

|H| < (quts®H)7r . (19)

As stated in Section 1, using the faithful representation (4) of T'(2,m,n) in
SLs(Z[¢,m]) for 1/m + 1/n < 1/2, in [9] the author derived an upper bound on
the number of darts §(m,n,r) of the smallest regular map of type {m,n} and of
planar width larger than 7:

d(m,n,r) < g72r(men)(mn)®

We now improve this bound for maps of type {p, 3} for prime p > 11.

Let m = p > 7 be a prime and let n = 3; then = 2cos(n/p) and £ =
2cos(n/3) = 1. Substituting £ = 1 in (4) we obtain a faithful representation ¥ :
T(2,p,3) = SL3(Z[n]) of the triangle group T'(2,p,3) = (z,y| 2* = y? = (yz)? =
1), where the ring Z[n] is obtained by adjoining to Z the root n of the minimal
polynomial ®,(z):

-1 -1 0 -1 0 7
Wz) = 1 0 0 and Y(y) = 1 1 0 |.
n n 1 - 0 -1

In order to apply Theorem 6 we need upper bounds w and ¢ on the width and the
norm of the matrices () and 9¥(y). The polynomials A;;(n) € ¥(z) and Aj;(n) €
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Y¥(y) are linear (except for A, (n) which is quadratic), so the norm and the width of
matrices ¥(z) and J(y) are t = 1 and w = 2. The polynomial ®y,(z) is of degree
d = (p—1)/2. From (14) we have, for p > 11, ||®,(x)|| < 0.316 - 1.274?. Therefore
s =14 [|®y(z)]] <1+ 0.316 - 1.2747 < (1/3)(4/3)?. Combining these facts with
Proposition 2 we obtain the upper bound of number of darts of the smallest regular
map of type {p,3}, p a prime, and of planar width larger than 7.

Theorem 7 For any prime number p > 11 and any r > 1 we have

5(p.3,1) < <(%)p—5 . (g)p(p—3)>9T(p1)2/4 | o)

Let us compare the bound on the number of darts §(p, 3,7) derived from (1) with
our bound (20). If we substitute m = p and n = 3 into (1) we obtain, for p > 3,

8(p, 3,7) < 2103w (21)
On the other hand, the bound (20) can be rewritten in the form

5(p,3,1r) < 9% logy 3 7(p=5)(p=1)*+{logy § rp(p—3)(p—1)*

The left-hand side of the exponent is negative and the right-hand side of the exponent
can be bounded by 9/4log,(4/3) rp*. Therefore, from (20) we have

d(p,3,7) < 2094rp"

We see that this result (which is Theorem 1 from the Introduction) is much better
than (21) for prime p > 11.
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