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Abstract

In this paper, we analyze the familiar bubble sort algorithm and quantify
the deviation of the output from the correct sorted order if the outcomes
of one or more comparisons are in error. We thus generalize the results
of Islam and Lakshmanan (1990). We show that the resulting disorder
in the output of the bubble sort with |n/2| errors, where n is the size of
the list sorted, is comparable to that of straight insertion sort, recursive
merge sort and heapsort algorithms with just one error.

1 Introduction and review of the literature

Reliability of computer hardware and software is a major concern in many applica-
tions, whether they are in space exploration, patient monitoring, telephone call rout-
ing, or simple multi-media communication. Therefore, fault diagnosis, fault-tolerant
computing, and distributed algorithms have become areas of active computer science
research, involving sophisticated hardware and software techniques ([12] and [19]).
In general, there are two main themes seen in the literature in this area: (a) the study
of existing widely-used algorithms in order to determine how well they cope with fail-
ures, or (b) the development of new algorithms that are demonstrably fault-tolerant.
In coping with faults, there are two approaches. The first is the reconfiguration ap-
proach in which faults are diagnosed, faulty components are isolated, and the system
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is reconfigured. The second approach requires devising robust algorithms that work
correctly independent of the faulty behavior of some components, without explicitly
singling out faulty ones.

Sorting and searching are two problems of fundamental nature studied quite ex-
tensively in combinatorics and computer science [10]. They arise in several contexts,
e.g., in arranging entries in a database and later retrieving some of them. Because
of their fundamental nature, sorting and searching algorithms are taught in the
very first course in computing. A large number of algorithms have been developed,
analyzed quite extensively, and classified. For serial computers (random access ma-
chines) that allow only one operation to be executed at a time, it is well known that
O(nlogn) comparisons are necessary for sorting n items in the worst case under the
comparison tree model [10]. However, a number of interesting questions regarding
sorting algorithms and the number of comparisons performed have been posed over
the years, and have been answered partially:

(a) Is it possible to reduce the number of comparisons substantially if one settles
for partially sorted outputs? ([17])

(b) If the number of comparisons that can be performed is limited, how should
we use them to minimize the disorder of the output?

(c) If the list to be sorted is already partially sorted, how can the existing order
be taken advantage of to reduce the number of comparisons? ([15])

(d) Is it possible to develop an alternative taxonomy of sorting algorithms based
on factors other than the number of comparisons? ([16])

In recent years, inspired by the problems posed by the famous mathematicians
Rényi and Ulam, a number of researchers have developed and analyzed variations of
search, select and sort algorithms to cope with possible errors in comparisons (see
[4], [8], and [22]). By an error, we mean the outcome of a binary comparison between
two data elements is “no” when factually it should be “yes”, and vice versa. Pelc [18]
provides a comprehensive survey of the literature in this field.

Bagchi [3] and Lakshmanan et al. [11] have studied fault-tolerant algorithms for
sorting with a worst-case upper bound on the number of erroneous comparisons.
Feige et al. [8] have studied sorting under the noisy comparison tree model in which
each node of the tree gives the wrong answer with some constant probability. Sorting
networks present an interesting, but a different model of computation in which fault-
tolerance has been explored in depth. A comparator, the basic building block, is
a two-input, two-output element that can compare and place the larger of the two
inputs on a specified output port and the smaller on the other output port. In
contrast to serial computers, a network of comparators allows a number of operations
to be done in parallel [5]. The size of the network is defined as the number of
comparators, and is related to the overall cost. On the other hand, the depth of
the network is defined as the maximum length of any path from the input to the
output, and is related to the time to accomplish sorting. Ajtai et al. [1] were the first
to present a network of aymptotically optimal size O(nlogn) and depth O(logn).
Yao and Yao [23] initiated the study of fault-tolerant sorting networks in which a
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faulty comparator simply outputs the two inputs without any processing, as if it is
simply non-existent. Their analysis included two scenarios: one with a worst-case
upper bound on the number of faulty comparators, and another with random faults.
In the case of random faults, the objective is to ensure that the network sorts the
output correctly with a high probability. The passive fault model of Yao and Yao
have been extended in recent literature [13] to a destructive fault model in which a
faulty comparator can output the two inputs in reversed order, or output one of the
two inputs in both output ports. In this new model, replicators are therefore used
to copy items. In [14], Leighton and Ma present tight bounds on the size of the
fault-tolerant merging and sorting networks, analyzing both worst-case and random
comparator faults.

In this paper, we analyze the familiar bubble sort algorithm in a new light: if
the outcomes of one or more comparisons are in error, by how much will the output
deviate from the correct sorted order? Obviously, crucial to all this work is the
measure of disorder used in the analysis. Considerable work has been done in this
area [7].

Let a = (aj, as, . .., a,) be alist or finite sequence consisting of n distinct integers.
Assume that the correct order for sorting is the ascending one. The degree of disorder
of the list a can be quantified in a variety of ways (e.g., see [7], [10] and [15]): by the
number of runs in a; the smallest number of elements in a that should be removed
from a to leave it sorted; and the number of inversions in a. By a run in a we mean a
non-descending sublist of consecutive elements in a, say (a;, @it1, - - -, G ), such that
a; is not preceded by a smaller number, and a,, is not followed by a larger number.
For a sorted list a the number of runs is 1, while for a list a with n elements in
reverse order the number of runs is n. The smallest number of integers that should
be removed from a list a of n elements to leave it sorted is 0 for a sorted list, while
this number equals n — 1 for a list a in reverse order. By inversion in a we mean a
pair of integers in @ in the wrong order. For a sorted list a the number of inversions is
0, while for a sequence a in reverse order the number of inversions is n(n —1)/2. (For
the notation used in this paper for the three measures of disorder, see Section 3.)

The three measures defined above are not related to each other in simple and
obvious ways. For example, consider the following two sequences: (1 + n/2,2 +
n/2,...,n,1,2,...,n/2) and (2,1,4,3,...,n,n—1), where n is even. Both sequences
require n/2 elements to be removed to leave them in ascending sorted order. But the
first sequence has two runs and n?/4 inversions, whereas the second one has 1+ n/2
runs and n/2 inversions.

The problem considered is to quantify the degree of disorder of the output se-
quence of bubble sort, when some of its comparisons are erroneous. For a given
length of an input sequence of positive integers and for a given number of erroneous
comparisons, we calculate (or at least estimate) the worst and best case values of
the three aforementioned measures of disorder for the possible output sequences ob-
tained from bubble sort. We thus extend the results by Islam and Lakshmanan [9]
for bubble sort.

One may intuitively guess that algorithms that sort efficiently, that is, those that
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use O(nlogn) comparisons in the worst case will be more sensitive to errors than
those that use O(n?) comparisons. Preliminary results by Islam and Lakshmanan [9]
showed that the above intuitive conjecture might be incorrect. By analyzing sort
algorithms under the assumption that exactly one comparison was in error, they
found that the efficient merge sort algorithm is in fact less sensitive to errors than
the straight insertion sort algorithm. In addition, even though both quicksort and
merge sort use the divide-and-conquer strategy, there is a lot of difference in their
performance when one comparison is in error. Computer simulation results in [9]
show that the bubble sort is indeed the least sensitive to errors.

The organization of the paper is as follows: In Section 2, we give a brief review
of bubble sort and explain what happens to the three measures of disorder as the
algorithm progresses from one pass to the next one. In Section 3, we introduce the
basic notation to be used in the paper. In Section 4, we prove some complementarity
results for the number of runs and the number of inversions in the output sequence
obtained after an erroneous execution of bubble sort operates on an input sequence.
In particular, we give formulas that relate the maximum number of runs to the
minimum number of runs, and the maximum number of inversions to the minimum
number of inversions. In Sections 5, 6, 7, and 8 we give inequalities, equalities, and
tables for the maximum number of runs, the maximum number of inversions, the
maximum value of the smallest number of removals, and the minimum value of the
smallest number of removals, respectively, for the output sequence obtained after
an erroneous execution of bubble sort. Finally, Section 9 contains some concluding
remarks.

2 Bubble sort

for (i=1i<n;i=i+1)
for (j=n;j>i;5=35-1)
if (aj,1 > a]')
swap a;j_; and a;

Consider the bubble sort algorithm given above. If there are no errors in compar-
isons, at the beginning of the it pass, the smallest i — 1 integers occupy their correct
positions. During the i** pass over the input list a, the algorithm “bubbles” the 5**
smallest element in a to the i® position (from the left) in the output sequence. The
algorithm makes n — 1 passes over the input list, with n — ¢ comparisons during the
i" pass. Hence it does exactly n(n — 1)/2 comparisons in total. Moreover, in the
absence of errors in comparisons, every swap between adjacent elements (that are
not in the right order) removes one inversion. Hence, as the algorithm progresses,
the number of inversions in the sequence goes down to 0 monotonically. In a list of
distinct integers, the number of inversions is equal to the number of moves/swaps
bubble sort performs when sorting the list. (In the context of Straight Insertion Sort,
this is stated by [10], Section 5.2.1, p. 82.)

As the algorithm progresses, the minimum number of integers to be removed from
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the list to leave it sorted in ascending order goes down to 0 monotonically. On the
other hand, a swap intended to remove an inversion may cause the number of runs
to go up by one. Consider, for example, the sequence (2,4, 1,3), which has two runs.
Swapping 1 and 4 leads to three runs in the sequence. Still, the number of runs
at the end of any pass will be no more than that at the end of the previous pass,
eventually going down to 1.

3 Notation

Let N = {0,1,2,...}. For each n € IN\{0, 1}, let A, be the set of all lists with n
distinct integers as elements. Let, also, B, be the set of all executions of the bubble
sort algorithm, B : A, — A,, that can sort lists of length n, and can make up to
n(n —1)/2 errors when making comparisons. This means that, for each B € B, the
collection of comparisons where B is erring is uniquely associated with B. Let also
E(B) be the total number of errors B does.

For each n € IN\{0,1}, a € A,, and B € B,, let R(a, B) be the number of runs
in the output list after B operates on a. Obviously, 1 < R(a,B) < n. For each
integer e with 0 < e < n(n —1)/2, let

Mruns(n,e) = max{R(a,B): a € A,, B€ B,, E(B) =c¢};
mruns(n,e) = min{R(a,B): a € A,, B € B,, E(B) = e}.

In other words, Mruns(n,e) and mruns(n, e) represent the worst and the best case
scenario, respectively, for the number of runs in the output list obtained when an
execution of bubble sort with exactly e errors operates on a list of integers with
length n.

For each n € IN\{0,1}, a € A,, and B € B,, let RM(a, B) be the smallest num-
ber of integers that should be removed from the output sequence, after B operates
on a, to leave it sorted. Obviously, 0 < RM(a, B) < n — 1. For each integer e with
0<e<n(n—1)/2 let

Mrem(n,e) = max{RM(a,B): a € A,,B € B, E(B) = e};
mrem(n,e) = min{RM(a,B): a € A,,B € B,,E(B) =¢}.

Again, Mrem(n, e) and mrem(n, e) represent the worst and the best case scenarios,
respectively.

For each n € IN\{0,1}, a € A,, and B € B,, let I(a, B) be the number of
inversions in the output list after B operates on a. Obviously, 0 < I(a, B) < n(n —
1)/2. For each integer e with 0 < e < n(n —1)/2, let

Minv(n, e)

minv(n, e)

max{I(a,B): a € A,,B € B,, E(B) = e};
min{l(a,B): a € A,,B € B,, E(B) = e}.

Thus, Minv(n,e) and minv(n,e) represent the worst and the best case scenarios,
respectively.
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4 Complementarity results

Let n € IN\{0,1}. If a € A,, let ranks(a) = (ry,72,...,7,) be the list of ranks of the
elements of a, where the smallest number gets the smallest rank. In other words, for
1 <i < n,r;is the rank of the it" element of a. Obviously, ranks(a) is a permutation
of the integers 1,2, ...,n. In addition, the list (n+1—ri,n+1—ry,...,n+1—17,)
is also a permutation of the first n positive integers. Consider the list @ € A, called
the complement of a, which is created by putting in the " position the element of a
whose rank is n + 1 — r;. Then ranks(@) = (n+1—-r;,n+1—ry,...,n+1—r,).
For a list a € A,, let R(a) and I(a) be the number of runs and the numbers
of inversions, respectively, in a. For a finite set A, let #A denote the number of
elements of A. The proof of the following lemma is easy and hence is omitted.

Lemma 4.1 R(a)+ R(a) =n+1 and I(@) + I(a) = n(n —1)/2.

Let Dy, be the set of all atomic operations OP — C — SI : A, — A, (for
operation compare and swap if inversion is discovered) that compares two items in
a sequence in A,, and if it is discovered that they constitute an inversion, it swaps
the items (the smallest number goes to the left). For each OP — C' — ST € Dy,
there is a unique doubleton set {7, j} C {1,2,...,n} (with ¢ < j) such that for each
a € A,, the elements a; and a; are compared. Define also the complement operation
OP —C - SI: A, — A, (with associated doubleton set {i, j}, where 1 <i < j <n)
such that for each a € A,, it compares a; and a;, and swaps them if and only if there
is no inversion (i.e., a; < a;).

Let Dy, ={OP —C —SI: OP—C—SI € D1,}, and D,, = D1, UDsy,. For each
S € D,, the complement S can be defined in the obvious way.

Lemma 4.2 For any n € IN\\{0,1}, a € A, and S € D,,, we have S(a) = S(a).

Proof: Let ranks(a) = (s1,...,,). Then ranks(a) = (n+1—s1,...,n+1—s,).
Assume the atomic operation S : A, — A, compares the i*" and j* element of any
sequence in A,, where 1 < i < j < n. Note that S(a) is a permutation of a and S(a)
is a permutation of @.
If S is in error, then S € D,, and S is not in error. In such a case, for k& €

{1,2,...,n}:

Sk if k 7é L,j

ranks(S(a))y = { max(s;,s;) ifk=i¢
min(s;,s;) ifk=j

and
n+1-— s ifk#£14,j
ranks(S(@))y =< min(n+1—s;,n+1—3s;) ifk=1
max(n+1—s;,n+1—s;) ifk=j
Since

max(s;,s;) +min(n +1—s;,n+1—-s;) =n+1
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and
min(s;, s;) + max(n+1—s;,n+1—s;) =n-+1,

it follows that S(a) is the complement of S(a).

If S is not in error, then S € D,, and we can arrive to a similar conclusion by a
similar argument. This concludes the proof of the lemma. O

If B € B, is an execution of bubble sort, define its complement, B € B,, to be
the execution of bubble sort that errs in comparison k of pass i (where 1 <i<n—1

and 1 < k < n—1) if and only if B does not err there. It follows that E(B) =
n(n —1)/2 — E(B). Using finite induction and Lemma 4.2 we can easily show the
following result.

Lemma 4.3 Ifa € A, and B € B, then the output list we get when B operates on
a is the complement of the output list we get when B operates on a.

Recall that, for each n € IN\{0,1}, a € A,, and B € B,, the integers R(a, B)
and I(a, B) are the number of runs and number of inversions, respectively, in the
output list after B operates on a. Combining Lemmas 4.1 and 4.3, we can prove the
following result.

Corollary 4.4 Fora € A, and B € B,, R(@,B) =n+1— R(a,B) and I(a,B) =
n(n—1)/2 — I(a, B).

For integers e, k,m with 0 < e,m < n(n —1)/2, and 1 < k < n, define:

SR(n,e;k) = {(ranks(a),B): a € A,, B € B,, E(B)=e¢, R(a,B) =k};
SI(n,e;m) = {(ranks(a),B): a € A,, B € B,, E(B) =e¢, I(a,B) = m}.

Let P, be the set of permutations of the first n positive integers, and let Bf be the
set of all executions of bubble sort that make exactly e errors. For given n and e,
the sets SR(n,e; k), k =1,2,...,n, partition the set P, x B85, which has n!(”(”_el)ﬂ)
elements. The same happens with the sets SI(n,e;m), m = 0,1,...,n(n — 1)/2.
Note, however, that some of these sets may be empty. Define

Nruns(n, e; k) = #SR(n,e; k), Ninv(n,e;m) = #SI(n,e;m).

We are now ready to prove the main result of the section.

Theorem 4.5 If e, k,m are integers with 0 < e,m < n(n—1)/2, and 1 < k < n,
then

Nruns(n,e; k) = Nruns(n,n(n—1)/2 —e; n+1—k);
Ninv(n,e;m) = Ninv(n,n(n —1)/2 —¢; n(n —1)/2 —m).
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Proof: Define the mapping f : P, x B, = P, x B, by f(a,B) = (@, B) for all
(a,B) € P, x B,. It is easy to show that f is well-defined and one-to-one. For
A C P, xB,,let f(A) be the image of A under f. It follows from Corollary 4.4 that:

f(SR(n,e;k)) = {(ranks(a),B): a € A,, B € B,, E(B) =e, R(a,B) =k}
{(ranks(a'),B"): o' € A,, B' € B,, E(B')=n(n—-1)/2 -,
R(d,B)=n+1-k}.

Therefore, f(SR(n,e;k)) = SR(n,n(n—1)/2—e;n+1— k). By a similar argument
we can show that f(SI(n,e;m)) = SI(n,n(n —1)/2 —e;n(n —1)/2 — m). Since f
is one-to-one, the statement of the theorem follows easily. O

Using the notation of Section 3, we have:

Mruns(n,e) = max{k: Nruns(n,e;k) > 0},
mruns(n,e) = min{k: Nruns(n,e; k) > 0},
Minv(n,e) = max{m : Ninv(n,e;m) > 0},
minv(n,e) = min{m : Ninv(n,e;m) > 0}.

Corollary 4.6 Ifn € IN\{0,1} and e is an integer with 0 < e < n(n —1)/2, then:
mruns(n, e) + Mruns(n,n(n —1)/2 —e) =n + 1;
minv(n, e) + Minv(n,n(n — 1)/2 —e¢) = n(n —1)/2.
Proof: By Theorem 4.5,

mruns(n,e) = min{k: Nruns(n,e; k) > 0}

min{k : Nruns(n,n(n—1)/2 —e;n+1—k) > 0}
n+ 1 —max{l: Nruns(n,n(n —1)/2 —e;1) > 0}
= n+1—Mruns(n,n(n —1)/2 —e).

A similar proof can be given for the second equality. O

The previous corollary allows us to prove results about mruns(n, e) and minv(n, )
by utilizing results about Mruns(n,e) and Minv(n, e), respectively. For this reason,
in Sections 5 and 6 we do not state or prove any results about mruns(n,e) and
minv(n, e).

Unfortunately, similar complementary results do not hold for mrem(n,e) and
Mrem(n, e), and so in Sections 7 and 8 we prove separate results for each of these
quantities.

5 Maximum number of runs

The following theorem gives some inequalities regarding Mruns(n, e).
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Theorem 5.1 Let n € IN\{0,1}. Then:
(a) For any integer e with 0 < e < n(n —1)/2: Mruns(n,e) < min(n,e + 1).
(b) For any integer e with 0 < e < n(n —1)/2:

(i) Mruns(n,e) < Mruns(n + 1,e) (#4) Mruns(n,e) < Mruns(n + 1,e+ 1).
(¢) For any integer e with 0 < e < n(n+ 2)/8:

V8 1-1

Mruns(n,e) > {%J .

(d) For any integer e with 0 < e < n(n — 1)/2 — 1, if Mruns(n,e) = n, then
Mruns(n, €) = n for all integers € with e < e < n(n —1)/2.

Proof: (a) It suffices to show that Mruns(n,e) < e+ 1for0 < e <n-—2. We
use finite induction on e. If e = 0, then Mruns(n,0) = 1 = 0+ 1. Let € be an
integer with 1 < ¢ < n — 2, and assume for any integer ¢ with 0 < e < ¢, we
have Mruns(m,e) < e+ 1 for all m € IN\{0,1} with e < m — 2. (In such a case,
the inequality Mruns(m,e) < e + 1 would then hold for all m € IN\{0,1} with
e <m(m—1)/2.) Let a € A, and B € B,, with E(B) = ¢ be given. Assume that,
when B operates on a, the first error happens in pass ¢ (where 1 <¢ < n —1). This
means that the smallest ¢ — 1 integers from a have been “bubbled” to the left to their
correct positions. If i = n — 1, then R(a,B) =2 < e+ 1.

Assume 1 < ¢ < n — 2. Let a be the list of length n — i that results after ¢
passes of B on a (and after ignoring the i elements of a that have been placed by
B in positions from 1 through 7). Let B’ be the part of B that consists of passes
i+1,i+2,...,n—1. Then o € A, ; and B' € B,_; with E(B’) < e¢. By the
induction hypothesis,

R(d',B') < Mruns(n —i,E(B')) < E(B') + 1 <e.

It can be easily proved that R(a,B) < R(a',B') + 1. Hence R(a,B) < ¢+ 1 for
all a € A, and B € B, with E(B) = ¢. Hence, Mruns(n,e) < € + 1, and by the
induction theorem the inequality has been proven.

(b)(i) By definition, there is a list a € A,, and an execution B € B,, of bubble sort
such that E(B) = e and R(a, B) = Mruns(n,e). The list a may be chosen so that
it is a permutation of the numbers 1,2,...,n. Let ¢’ = (a,n + 1) and let B’ € B4y
be an execution of bubble sort that does not err in the first comparison of each pass,
and for 1 <i<n-1and 2 <k <n+1-1iterrsin comparison k of pass 7 if
and only if B errs in comparison k — 1 of pass . Then Mruns(n,e) = R(a,B) =
R(d’,B") < Mruns(n + 1, e).

(i) Choose a € A, and B € B, as in part (i). Define o’ = (a,n + 1) and let
B' € B,41 be defined as in part (i), but now assume that it also errs in the only
comparison of the last pass. Then R(a’, B') = R(a, B) or R(a,B) + 1, and so

Mruns(n, e) = R(a, B) < R(a’, B') < Mruns(n + 1,e + 1).
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(c) Let a = (n,n — 1,...,1). Let k(e) be the largest integer k such that k(k +
1)/2 < e. In other words,

o - |,

Since e < n(n + 2)/8, it follows that k(e) < n/2. Let B be an execution of the
bubble sort algorithm that errs exactly e times as follows: For each pass ¢ with
1 < ¢ < k(e), B errs in the last i comparisons of that pass; thereafter it errs
e — [k(e)(k(e) + 1)/2] times somewhere in the remaining passes. (This execution
exists since 1 < n — i for 1 <4 < k(e).) Then the first k(e) elements of the output
sequence are n,n — 1,...,n — k(e) + 1. Hence the output sequence has at least k(e)
runs, and so Mruns(n, e) > k(e).

(d) Let 0 < e < n(n —1)/2 — 1 with Mruns(n,e) = n. We will show that
Mruns(n,e + 1) = n, from which the statement of the theorem follows. Choose a
list @ € A, and an execution B € B, such that R(a, B) = Mruns(n,e) = n and
E(B) = e. Without loss of generality, we may assume that a is a permutation of
the integers 1,2,...,n. Since e # n(n — 1)/2, there is at least one comparison of
B that is not in error. Let i (where 1 < i < n — 1) be the last pass of B in which
such a comparison exists. In passes ¢ +1,...,n — 1 (if there are any left), all the
comparisons are in error. Let B' € B, be the execution of bubble sort that is identical
to B, except that in the last comparison of pass 7 in which B is not in error, B’ is in
error. Denote this comparison by &k (where 1 <k <n —i).

Since R(a,B) = n, the output of the operation of B on a is the list (n,n —
1,...,2,1). If 4 > 2, it follows from the definition of B’ that after i — 1 passes, the
integers n,n—1,...,n—1+2 have been placed in positions 1,2, ...,7—1, respectively.
We claim that (for ¢ > 1), the number n — i 4+ 1 will be put in position i after pass
t. This claim, along with the fact that all the comparisons in the remaining passes
(if any) are in error, implies that the final output of the operation of B’ on a will be
(n,n—1,...,2,1), whence part (d) of the theorem follows.

At the end of pass i of execution B, the number n — i + 1 is placed in position
7. Since in an error-free comparison the smallest number moves to the left and the
largest to the right, and since comparison k of pass ¢ of B is not in error, and since
n — i+ 1is the largest of the numbers 1,2,...,n —i,n — i + 1, it follows that: (i)
Comparison k is not the last comparison of pass ¢ of B (i.e., k # n —i); and (ii)
before pass i starts, n — i+ 1 is in the left of the two numbers that will be compared
in comparison k. In execution B’, comparison k of pass ¢ is in error, while all the
other comparisons of pass ¢ of B’ are the same (in terms of their error condition)
with the corresponding comparisons in execution B. This means that n — i+ 1 will
stay to the left of the numbers that are compared in comparison &, and being the
largest of the numbers 1 through n — 4 + 1, it will move to position 4 (since all the
comparisons after k in pass ¢ of B’ are in error). This proves the previous claim. O

The bounds obtained in the previous theorem are not always achieved. We have
Mruns(4,3) = 3 (see Table 1), which is not equal to min(n,e+1) = 4. Also, we have
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Mruns(4,2) = 3, which is not equal to
[(V8e+1-1)/2] =1

(although e < n(n + 2)/8). The following theorem gives some bounds or values for
Mruns(n, e) for various values of n and e.

Theorem 5.2 Let n € IN\{0,1} and e € IN. Then:
(a) Mruns(n,1) = 2.
(b) Mruns(n,2) =3 forn > 3.
(¢) Mruns(n,3) =4 forn > 5.
(d) 4 < Mruns(n,4) <5 forn > 5.
(e) If n > 2e, then Mruns(n,e) = e+ 1.
(f) If n > 3 and k is an integer such that 1 < k < (n —1)/2, then

{EJ —k+1 < Mruns (n, {EJ +k) < {EJ +k+1.
2 2 2
(g) Mruns(n,e) = n for all integers e > |n?/4].

Proof: (a) It was proven in [9].

(b) It follows from part (a) of Theorem 5.1 that Mruns(n,2) < min(n,2+1) =3
for n > 3. To finish the proof of (b), consider the list a = (n,n — 1,n — 2,...,2,1).
Assume that B is the execution of the bubble sort algorithm that errs exactly two
times as follows: During the last comparison of the first pass, and during the single
comparison of the last pass. Thus, for n > 4 the output list is (n,1,...,n —3,n —
1,n—2), while for n = 3 the output list is (3,2, 1). In such a case, the number of runs
in the output list is three, and so Mruns(n,2) > 3 for n > 3. Hence, Mruns(n,2) = 3.

(c) Assume that n > 5. It follows from part (a) of Theorem 5.1 that Mruns(n, 3) <
4. To show that Mruns(n, 3) = 4, let

a=(n,n—-1,12,...,n-3n—-2),

and let B € B, be the execution of bubble sort that errs in the last comparison of
passes 1, 2 and n — 1. Then the output list is

(n,2,1,3,4,...,n—3,n—1,n—2)
if n > 5, and (5,2,1,4,3) if n = 5. Thus, Mruns(n,3) > R(a, B) = 4, which proves
this part of the theorem.

(d) It follows from part (a) of Theorem 5.1 that Mruns(n,4) < 5 for n > 5. If

n > 6, let

a=(nn—1n-212...,n-3),
and let B € B,, be the execution of the bubble sort that errs in the last comparison
of passes 1, 2, n — 2 and n — 1. Then the output list is

(n,2,1,3,4,....,.n—4,n—2,n—-1,n—3)
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itn>7itis (7,2,1,3,5,6,4) if n = 7; and it is (6,2,1,4,5,3) if n = 6. Thus,
Mruns(n,4) > R(a, B) = 4 for n > 6.

Ifn=05,let « =(5,4,3,1,2), and let B’ € By be the execution of the bubble
sort that errs in the last comparison of passes 1 and 2, and in the first comparison of
passes 3 and 4. Then the output list is (5,2, 1,4, 3), which shows that Mruns(5,4) >
R(d,B'") = 4.

Combining all cases, we can prove the claim in part (d) of the theorem.

(e) The case e = 01is trivial. If e = 1 or 2, the equality has been proven in parts (a)
and (b). Assume 3 < e < n/2. By part (a) of Theorem 5.1, Mruns(n,e) < e+1. To
prove that Mruns(n,e) = e+1,let a = (n,n—1,n—2,...,2,1), and let B € B, be the
execution of bubble sort that errs in the last comparison of passes 1,3,5,...,2e — 1.
(Note that 5 < 2e —1<n —1.) If a; is the output list after pass i (1 <i < n —1),
then:

a = (n,L,n—-1n-2,...,2)
a3z = (n,1,3,2,n—1,n—2,...,4)
as = (n,1,3,2,5,4,n—1,n-2,...,6)

ase—1 = (n,1,3,2,5,4,7,...,2¢ —3,2¢e —4,2¢e —1,2¢ — 2,n — 1,n — 2,...,2¢)

a1 = (n,1,3,2,5,4,7,...,2¢ —3,2¢e —4,2¢ — 1,2¢ — 2,2¢,2¢ + 1,...,n — 1)

It can be easily seen that a,_; has exactly e+1 runs, which shows that Mruns(n,e) =
e+ 1.

(f) The right inequality follows from part (a) of Theorem 5.1. To prove the left
inequality, note that part (b)(ii) of Theorem 5.1 implies that Mruns(n — 2k, |[n/2] —
k) < Mruns(n, |n/2] + k). Since n — 2k > 2(|n/2] — k), it follows from part (e) of
this theorem that Mruns(n — 2k, [n/2| — k) = |n/2] — k + 1, which proves the left
inequality.

(g) Let k = |n/2]. Let a = (n,n—1,...,n—k+1,1,2,...,n — k). Consider
an execution B of bubble sort in which errors are introduced during the i™" pass as
follows: If i < k, the first n — k — 1 comparisons are error-free, while the remaining
k — 1+ 1 comparisons are erroneous. If i > k, all the comparisons are erroneous.
Then the output list is (n,n — 1,...,1). Note that, if n is even, the total number
of comparisons is n(n — 1)/2 = k(2k — 1), while the total number of errors is n(n —
1)/2 —k(n—k—1) = k(2k — 1) — k(k — 1) = k* = |n?/4]. If n is odd, then the
total number of comparisons is n(n — 1)/2 = k(2k + 1), while the total number of
errors isn(n—1)/2—k(n—k—1)=k2k+1) -k =k +k=(n?-1)/4 = [n?/4].
It follows that Mruns(n, [n?/4]) = n. It follows from part (d) of Theorem 5.1 that
Mruns(n,e) = n for all integers e > [n?/4]. O

The following example shows that |n?/4| is not always the smallest number of
errors e for which Mruns(n,e) = n. Let n = 8 and e = 14 < 16 = 8%/4. Let
a=(8,7,5,6,1,2,3,4), and let B € Bs be the following execution of bubble sort: In
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pass 1, comparisons 4, 6, 7 are erroneous; in pass 2, comparisons 4, 6 are erroneous; in
pass 3, comparisons 4, 5 are erroneous; in pass 4, comparison 4 is erroneous; in pass
5, comparisons 1, 2, 3 are erroneous; in pass 6, comparisons 1, 2 are erroneous; and
finally in pass 7, comparison 1 is erroneous. The ouput sequenceis (8,7,6,5,4,3,2,1),
which means Mruns(n,e) = R(a,B) = 8 = n.

Table 1 gives the maximum number of runs for small values of n. They have been
calculated either using the results of the section, or using a C++ program, which is
available from the second author.

Table 1: Values of Mruns(n, e) when n is small.

e

01123 |4|5|6|7|8|9]10|11 |12 |13 | 14|15
2172

3112]3|3
n|4| 1233444

5112|3444 |5|5|5|5]|5
6112|3|4|5|5|5|5|6|6|6|6|6 6|66

6 Maximum number of inversions

The following theorem gives some results regarding Minv(n, e).

Theorem 6.1 Let n € IN\{0,1}. Then:
(a) Minv(n,1) =n — 1.
(b) Minv(n,2) = 2n — 4 forn > 4.
(¢) For any integer e with 0 < e < n(n —1)/2:

max(e(n — e),0) < Minv(n,e) < e(n —2) + 1.
(d) For any integer e with 0 < e < n(n +2)/8:

E(e)[2n — k(e) — 1]
2 b

Minv(n,e) >

where
V3 +1-1
kle)=|——+——].
2

(e) For any integer e with 0 < e < n(n —1)/2 — 1, if Minv(n,e) = n(n — 1)/2,
then Minv(n,€) = n(n — 1)/2 for all integers € with e < ¢ < n(n —1)/2.

(f) Minv(n,e) = n(n — 1)/2 for all integers e > |n*/4].

(g) Minv(n,e + 1) > Minv(n, e) for all integers e with 0 < e < n(n — 1)/2.



98 PETROS HADJICOSTAS AND K. B. LAKSHMANAN

Proof: (a) It was proven in [9].

(b) Let n > 4. From part (c) of this theorem (with e = 2) we get 2n — 4 <
Minv(n,2) < 2n—3. Assume Minv(n,2) = 2n—3. We shall arrive to a contradiction.

We may choose a € A, and B € B, with E(B) = 2 such that I(a,B) =
Minv(n,2) = 2n — 3, and such that a is a permutation of the integers 1,2, ...,n. For
j€A{L,2,...,n}, let I(j) be the number of inversions, in each of which integer j is
the largest number, that occur in the output list obtained after the operation of B on
a. Then 0 < I(j) < n — 1, and for two distinct integers j, i’ € {1,2,...,n} we have
I(j) +I(j') < (n—1) 4 (n —2) = 2n — 3. It is then clear that the only way to have
I(a,B) = 2n — 3 and E(B) = 2 is when the output list is (n,n —1,1,2,...,n — 2).
It is impossible for both errors to occur in the first pass, for otherwise in the output
list the last n — 1 integers would be sorted. Therefore, one error occurs in pass 1
(and involves n), and the other one occurs in pass 2 (for otherwise the output list
would not be as claimed above). The first two integers of the output list obtained
after the first pass should be n and 1 (in that order). It is clear then that the second
error should involve 1 and n — 1. Since n — 1 is the second largest integer of the list
a and since n > 4, we need at least two errors in the second pass to move n — 1 to
the second position. This is a contradiction.

(c) The left inequality needs to be proven only when 1 < e < n — 1. We let
a=(nn—1,...,n—e+1,1,2,...,n —e), and B be the execution of bubble sort
that errs in comparison n — e of pass ¢ for i = 1,2,...,e. Then the output list is
(n—e+1,...,n—1,n,1,2,...,n—¢), and so Minv(n,e) > I(a, B) = e(n — ¢).

To show the right inequality, use finite induction on e. The proof of this inequality
is similar to the proof of part (a) of Theorem 5.1, and hence is omitted.

(d) Let a = (n,n—1,...,1). Let B be the execution of bubble sort (with errors)
that is described in the proof of part (c) of Theorem 5.1. Then the first k(e) elements
of the output list are n,n—1,...,n—k(e)+1, and so the output sequence has at least
(n—=1)4+(n—2)+...4(n—k(e)) inversions. Thus, Minv(n,e) > k(e)[2n—k(e)—1]/2.

(e) It follows from part (d) of Theorem 5.1 and from the fact that Minv(n,w) =
n(n —1)/2 if and only if Mruns(n,w) = n (where 0 < w < n(n —1)/2).

(f) It follows from part (g) of Theorem 5.2 and the fact that Minv(n,w) =
n(n —1)/2 if and only if Mruns(n,w) = n (where 0 < w < n(n —1)/2).

(g) Choose a € A, and B € B,, with E(B) = e such that Minv(n,e) = I(a, B).
Let b= (by,...,bs) be the output list after the operation of B on a. Determine integer
1 such that 1 <4 < n—1, pass i contains at least one non-erroneous comparison, and

passesi+1,...,n—1 (if any) contain only erroneous comparisons. Such an integer i
exists since e < n(n — 1)/2. Note that b1, ..., b, are in reverse order in the output
sequence.

Construct an execution B’ € B,, of bubble sort such that it is identical to execu-
tion B except that one more error is introduced in the last non-erroneous comparison
of pass i. As a result, in the new execution B’, all comparisons from the point of
introduction of the new comparison are erroneous. Let ¢ = (c1,. .., ¢,) be the output
sequence for this new execution. Clearly b; = ¢; for j = 1,...,7 — 1 (since B and
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B’ are identical until pass i — 1). Also, ¢; > b;, and ¢;41, .. ., ¢, are in reverse order

(since all the comparisons from the point of introduction of the new comparison are
erroneous).

For a permutation dy,...,d, of the integers 1,2,...,n, the contribution of any
element d; to the number of inversions is the number of values to its right that are
less than d;. So, for the output sequence c¢ the number of inversions resulting from

c1,...,ci—1 must be the same as from by,...,b;_1 in the output sequence b. Since
¢; > by, the contribution from ¢; is not less than that from b;. Since both b;41,...,b,
and ¢;41, .. ., C, are in reverse order, their total contribution to inversions is the same.

Hence Minv(n,e+ 1) > I(a, B") > I(a, B) = Minv(n,e). O

Table 2 gives the maximum number of inversions for small values of n.

Table 2: Values of Minv(n,e) when n is small.

e

0(1(2|3(4 |5 |6 |7 |89 10|11 12|13 14|15
2101
311012(3|3
n|(4]0|3[4|5|6 | 6|6
510146 |7| 8|9 |10]|10|10] 10| 10
60|58 |9 |11 12|13 |14 |15 15|15 |15 |15 |15 |15 |15

7 Maximum value of the smallest number of removals

The following theorem gives some inequalities regarding Mrem(n, e), which is the
maximum value of the smallest number of integers needed to be removed to leave
the output list sorted. (The output list is obtained after an execution of the bubble
sort with e errors operates on a list of length n.)

Theorem 7.1 Let n € IN\{0,1} and e € IN.
(a) If 0 < e <n—1, then min(n — e,e) < Mrem(n,e) < e.
(b) For any integer e with 0 < e < n(n —1)/2:

(¢) Mrem(n,e) < Mrem(n + 1,e) (i) Mrem(n,e) < Mrem(n + 1,e + 1).

(c) If 0 < e <n(n+2)/8, then:

N M)

(d) For any integer e with 0 < e < n(n —1)/2 — 1, if Mrem(n,e) = n — 1, then
Mrem(n,e) =n — 1 for all integers € with e < e < n(n —1)/2.
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Proof: (a) For e = 0 the left inequality is trivially true, so assume 1 < e <n — 1.
Let a = (n,n—1,...,n —e+1,1,2,...,n —¢), and B be the execution of bubble
sort that errs in comparison n — e of pass i for i = 1,2,...,e. Then the output list is
(n—e+1,...,n—1,n,1,2,...,n—¢), and so Mrem(n, ¢) > RM(a, B) = min(n—e,e).
(Recall from Section 3 that RM(a, B) is the smallest number of integers that should
be removed from the output sequence, after B operates on a, to leave it sorted.)

To show the right inequality, we use finite induction on e. The proof of this
inequality is similar to the proof of part (a) of Theorem 5.1, and hence is omitted.

(b)(i) By definition, there is a list a € A, and an execution B € B, of bubble
sort such that E(B) = e and RM(a, B) = Mrem(n,e). The list a may be chosen so
that it is a permutation of the numbers 1,2,...,n. Define a' € A,.; and B € B,
as in the proof of part (b)(i) of Theorem 5.1. Then Mrem(n,e) = RM(a,B) =
RM(d',B") < Mrem(n + 1,e).

(ii) Let a € A, and B € B, be such that E(B) = e¢ and RM(a, B) = Mrem(n, e).
Assuming, without loss of generality, that a is a permutation of the numbers 1,2, ..., n,
let o’ = (a,n+1), and define B’ € B,,4; as in the proof of part (b)(ii) of Theorem 5.1.
Let b, be the output list of the operation of B on a, and b, be the output list of
the operation of B’ on a’. Let

K(b,) = {XC{1,2,....n}: #X = RM(a, B)};
K(byy) = {Y C{1,2,....,n,n+1}: #Y = RM(d',B')}.

Thus, if X (with #X = RM(a, B)) is removed from b, the rest of the list is left
sorted. Similarly, if Y (with #Y = RM(a', B')) is removed from b,, the rest of the
list is left sorted.

Assume c is the last element of b,. Since there is an error in the last comparison
of B', the last two elements of b,.; are n + 1 and ¢ (in that order). (Note that, if
n + 1 is removed from by, the rest of the list is just b,.) For each Y € K(b,11),
we have either n +1 € Y or ¢ € Y. We consider two cases: (A) n+ 1 € Y; for some
Yo € K(bpy1); and (B n+1¢ Y for all Y € K(by1).

In case (A), let Xo =Yy — {n+ 1}. Then by removing X, from b,, the rest of the
latter list is left sorted. This means #Xo > RM(a, B), which implies RM(da’, B') =
#Xo+1 > RM(a, B)+1. On the other hand, by removing n+1 from b, 1, we are left
with b, and then by removing any X € K (b,) we are left with a sorted list. Thus,
RM(d',B') < #X +1 = RM(a, B) + 1. It follows that RM(a’, B') = RM(a, B)+ 1.

In case (B), c € Y for all Y € K(by41). Choose Y; € K(b,y1), and note that
Y1 C {1,2,...,n}. By removing Y; from b,.;, we get a sorted list: apart from
n + 1, this is the same sorted list we would have got if we were removing Y] from
b,. Hence RM(d', B') = #Y1 > RM(a, B). Now choose Y3 € K(b,). If ¢ € Y3, then
by removing Y3 from b4, we get a sorted list, i.e., RM(a, B) = #Y> > RM(d', B')
(which implies RM(a,B) = RM(d',B")). If ¢ ¢ Ya, then by removing Y, U {c}
from b,1; we get a sorted list, i.e., RM(a,B) + 1 = #Y, > RM(d',B’) (and so
RM(a,B)+1> RM(d,B") > RM(a, B)).
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Combining all cases, we conclude that RM(a', B') = RM(a, B) or RM(a, B)+1.
It follows that: Mrem(n,e) = RM(a,B) < RM(d', B') < Mrem(n + 1,e + 1).

(c) Let a=(n,n—1,...,1). Let B be the execution of bubble sort (with errors)
that is described in the proof of part (c) of Theorem 5.1. Then the first k(e) elements
of the output list are n,n — 1,...,n — k(e) + 1. To leave the output list sorted one
must either remove at least all the first k(e) elements of it, or remove n — 1 elements
from it. This implies that Mrem(n,e) > RM(a, B) > min(k(e),n — 1) = k(e) (since
n >2and e < n(n+2)/8.)

(d) Let 0 < e < n(n—1)/2 — 1 with Mrem(n,e) = n — 1. Let € be such that
e < e < n(n—1)/2. Then there is a € A, and B € B, such that E(B) = ¢ and
RM(a, B) = n—1. Without loss of generality, we may assume that a is a permutation
of the integers 1,2,...,n. It follows that the output list after B operates on a is
(n,n—1,...,1), i.e., R(a,B) = n. This implies that Mruns(n,e) = n, and so by
Theorem 5.1, part (d), Mruns(n, ) = n. This in turn implies Mrem(n,e¢) =n — 1. O

The following theorem gives some values of Mrem(n,e) for various values of n
and e.

Theorem 7.2 Let n € IN\{0,1}. Then:
(a) Mrem(n,1) = 1.
(b) Mrem(n,2) =2 forn > 3.
(¢) For any integer e with 0 < e < n/2, Mrem(n,e) = e.
(d) Mrem(n,e) = n — 1 for all integers e > [n?/4].

Proof: (a) It was proved in [9].

(b) For n > 4, this part follows from part (c). Assume n = 3. Then Mrem(3,2) <
n—1=21Ifa=(3,2,1), and B € B is the execution of bubble sort that errs in
the last comparison of each of its two passes, then the output list is @ itself. Then
2 = RM(a, B) < Mrem(3,2). Hence Mrem(3,2) = 2.

(c) It follows from part (a) of Theorem 7.1.

(d) It follows from part (g) of Theorem 5.2 and the fact that Mrem(n,w) =n—1
if and only if Mruns(n, w) = n (where 0 < w <n(n —1)/2). O

Table 3 gives the maximum value of the smallest number of removals for small
values of n.

8 Minimum value of the smallest number of removals

The following theorem gives some results regarding mrem(n,e), which is the min-
imum value of the smallest number of integers needed to be removed to leave the
output list sorted. (The output list is obtained after an execution of the bubble sort
with e errors operates on a list of length n.)

Theorem 8.1 Assume n € IN\{0,1}. Then:
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Table 3: Values of Mrem(n,e) when n is small.

01123 |4|5|6|7|8|9]10|11 |12 |13 | 14|15
21011

31101122
n|4(0/1(2|23[3]3
5011123334444 4
61101234444 |5|5|5 |5 |5 |5 |5 |5

(a) mrem(n,0) = 0 and mrem(n,n(n —1)/2) =n — 1.

(b) For any integer e with 0 < e < n(n — 1)/2, if mrem(n,e) = 0, then
mrem(n, e) = 0 for all integers € with 0 < e < e.

(¢) For any integer e with (n —1)(n —2)/2 <e < n(n —1)/2,

mrem(n,e) > e — (n—1)(n —2)/2.

(d) For any integer e with 0 < e < n(n —1)/2: mrem(n + 1,¢) < mrem(n,e).
(e) For any integer e with 0 < e < n(n — 1)/2, if mrem(n,e) = 0, then
mrem(m, e) =0 for all integers m with m > n.

Proof: (a) The proof of this part of the theorem is easy, and hence is omitted.

(b) Choose a € A, and B € B, with E(B) = e such that RM(a,B) =
mrem(n,e) = 0. Then the output sequence, after B operates on a, is sorted,
ie, R(a,B) = 1. By Corollary 4.4, R(@,B) = n+1 — R(a,B) = n. Since
E(B) = n(n —1)/2 — e, Mruns(n,n(n — 1)/2 —¢) = n. Assume 0 < ¢ < e.
Since n(n — 1)/2 —e < n(n —1)/2 — ¢ < n(n — 1)/2, by Theorem 5.1, part
(d), Mruns(n,n(n — 1)/2 —€) = n. Then there is «’ € A, and B’ € B, with
E(B') = n(n — 1)/2 — € such that R(a/, B') = n. By Corollary 4.4, R(d’,B') =
n+1-R(d,B)=1,1ie., RM(d',B') = 0. Since E(B’) = ¢, mrem(n, ¢) = 0.

(c) We use finite backward induction on e. For e = n(n — 1)/2, the inequality is
true because mrem(n,n(n —1)/2) =n—-1=n(n—1)/2 = (n — 1)(n — 2)/2.

Let € be an integer such that (n — 1)(n — 2)/2 < € < n(n — 1)/2, and assume
mrem(n,e) > e — (n — 1)(n —2)/2 for all n € IN\{0,1} and all integers e such that
n(n—1)/2 > e > e Let a € A, and B € B, be an execution of bubble sort such
that E(B) = € and mrem(n,e) = RM(a, B). Since € # n(n — 1)/2, there is at least
one comparison in B that is not in error. Call the last pass where such a comparison
exists k (where 1 <k <n—1). In passes k+1,...,n — 1 (if there are any left), the
execution B is always in error. Define the execution B’ € B, to be identical to B,
except that in all the comparisons of pass k, B’ is in error.

In the output lists of the operations of B and B’ on a, respectively, the first k —1
elements, say ¢i1,cs,...,cr_1, are the same. (If & = 1, then there are no such ¢ in
the output lists.) Assume that after B operates on a, the remaining n — (k — 1)
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elements of a are dy,ds, ..., dp—(k—1) (in that order). In other words, the output list
is b= (c1,¢0, .- Che1,d1, .oy dp_(p—1)). Also,if kK <n—1,dy> ... > dn_(4-1). Let
S be a set of elements of a such that, when .S is removed from list b, the resulting
list is sorted. We may choose S such that #S5 = RM(a, B). Note that at most one
of the elements d, ..., d,_-1) can be out of S.

Denote the output list of the operation of B’ on a by . We consider two cases:
(1) b=V and (ii) b # V. Obviously, in case (i), RM(a, B") = RM(a, B).

In case (ii), dy occupies position k in output list &', and dy > d;. In general,
however, we do not know which position (after k) d; will occupy.

If di,dy € S, then removing S from ¥ gives exactly the same (sorted) list as
removing S from b. It follows then by the definition of RM(a, B') that RM(a,B') <
RM(a, B).

If di ¢ S and dy € S, then removing both S and d; from V' gives a sorted list
that is the sorted list obtained after removing S from b minus d;. In such a case,
RM(a,B") < RM(a, B) + 1.

Ifd, € S and dy ¢ S, then by removing S and dy from b’ we get a sorted list, and
so RM(a,B") < RM(a, B) + 1.

Finally, if dy,dy € S, then {ds,...,dn——1)} € S. Also, from the definition of S,
if k>1, then (¢; ¢ S=dy >¢) fori=1,...,k— 1. Hence, by removing S and d,
from ¥, we get a sorted list. Thus, RM(a, B') < RM(a, B) + 1.

Combining all cases, we conclude that RM(a, B') < RM(a, B)+1. Since E(B') >
E(B) = ¢, it follows that E(B') > e+1. Also, it follows from the induction hypothesis
that

e+l—(n—1)(n-2)/2 < E(B")=(n-1)(n—-2)/2 < mrem(n, E(B'))
< RM(a,B') < RM(a,B) +1 = mrem(n,¢)+ 1.

Therefore, e — (n — 1)(n — 2)/2 < mrem(n, €), and the induction is complete.

(d) By definition, there is a list a € A, and an execution B € B,, of bubble sort
such that E(B) = e and RM(a, B) = mrem(n,e). The list a may be chosen so that
it is a permutation of the numbers 1,2,...,n. Define ' € A,+; and B’ € B,; as
in the proof of part (b)(i) of Theorem 5.1. Then mrem(n + 1,e) < RM(d',B') =
RM(a, B) = mrem(n,e).

(e) It follows from part (d) of this theorem. O

Table 4 gives the minimum number of the smallest number of removals for small
values of n.

9 Concluding remarks

Algorithms for sorting are of fundamental importance in Computer Science, and
existing algorithms have been analyzed quite exhaustively. In this paper, we analyzed
the familiar bubble sort algorithm and quantified the deviation of the output from the
correct sorted order if the outcomes of one or more comparisons are in error. Thus,
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Table 4: Values of mrem(n, e) when n is small.

01123 |4|5|6|7|8|9]10|11 |12 |13 | 14|15
21011

30]0|1)2
n|(4]0/0{0|1|1(2]3

510]0(0)0 11122 4
6|(0j0jJO0O|OjO]jJOfOjO|L1|1|2|2|3 |3 ]| 4|5

this paper extends the work of Islam and Lakshmanan [9] who handled the case of
a single error. Part of their results (for the worst case scenario) are summarized in
Table 5. (For simplicity we assume that n is a multiple of 4.)

Table 5: Sort algorithms with one error: Worst-case scenario.

Algorithm Number of runs | Smallest number of removals | Number of inversions
Bubble sort 2 1 n—1
Straight insertion sort 2 n/2 n2/4
Recursive merge sort 2 n/4 n?/8 +n/4
Heapsort Q(n) Q(n) Q(n?)

One may intuitively guess that algorithms that sort efficiently, i.e., those that use
O(nlog, n) comparisons in the worst case, will be more sensitive to errors than those
that use O(n?) comparisons. One of the surprising results of Islam and Lakshmanan
[9] is that the above intuitive guess is not true, as presented in the table (e.g., compare
straight insertion sort and recursive merge sort). Hence there is a need for a detailed
analysis of all sorting algorithms when we have more than one comparison in error.

From Theorems 5.2(e), 7.2(c), and 6.1(c) of the paper, we can easily deduce the
following corollary about the asymptotic behaviour of bubble sort when the number
of errors is small compared to the length of the input list:

Corollary 9.1 Let e be a fized nonnegative integer. Then
(a) lim,_,o Mruns(n,e) = e+ 1;
(b) lim,_, o Mrem(n,e) = ¢;
(¢) lim, o Minv(n,e)/n = e.

Actually, Theorems 5.2(e), 7.2(c), and 6.1(c) say something more: If e = [n/2],
then Mruns(n,e) = |n/2] + 1, Mrem(n,e) = [n/2], and n?/4 — 1 < Minv(n,e) <
n(n — 2)/2 + 1. In contrast, even a single error in comparison can lead to O(n)
minimum removals and O(n?) inversions for the algorithms presented in the table.
In other words, the results of this paper show that the resulting disorder in the output
of the bubble sort with |n/2] errors is comparable to that of straight insertion sort,
recursive merge sort and heapsort algorithms with just one error.
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An obvious direction for future research is to develop results for straight insertion
sort, recursive merge sort and heapsort, allowing more than one error in comparisons.
Then, we will be able to compare the performance of all the algorithms when multiple
errors occur. Moreover, it is not clear if the measures of disorder chosen by us are the
most appropriate for this comparison. It may be possible to analyze the algorithms
for other measures of disorder proposed in the literature; see [7]. In [10], Knuth
concludes the analysis of the bubble sort algorithm with the remark, “the bubble
sort seems to have nothing to recommend it, except a catchy name and the fact that
it leads to some interesting theoretical problems”. Our results in this paper suggest
that bubble sort is probably the least sensitive to errors. Even bubble sort has some
redeeming features!
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