On equality in Berge's classical bound for the domination number

Anders Sune Pedersen

Department of Mathematics
Alborg University
Fredrik Bajers Vej 7G
DK 9220 Alborg
Denmark
asp@math.auc.dk

Abstract

Let $\gamma(G)$ denote the cardinality of a minimum dominating set of a graph G. A well-known upper bound for $\gamma(G)$, due to Berge (1962), states that for any graph G of order n and maximum degree Δ , $\gamma(G) \leq n - \Delta$. Similarly, Hedetniemi and Laskar (1984) proved $\gamma_c(G) \leq n - \Delta$, where $\gamma_c(G)$ denotes the cardinality of a minimum connected dominating set of G. In this paper, we characterize the regular graphs with $\gamma(G) = n - \Delta$, the regular graphs with $\gamma_c(G) = n - \Delta$ and the triangle-free graphs with $\gamma_c(G) = n - \Delta$. Moreover, we prove that both the problem of deciding whether $\gamma(G) = n - \Delta$ and the problem of deciding whether $\gamma(G) = n - \Delta$ and the problem of deciding whether $\gamma_c(G) = n - \Delta$ are co - NP-complete.

1 Introduction

We consider finite, simple graphs G = (V(G), E(G)) with maximum degree $\Delta(G)$ and n(G). Given any subset $U \subseteq V(G)$ the induced subgraph on U is denoted by G[U]. For any vertex $v \in V(G)$, the open neighbourhood N(v) of v is defined by $N(v) = \{u \in V(G) \mid uv \in E(G)\}$ and the closed neighbourhood N[v] of v is defined by $N[v] = N(v) \cup \{v\}$. For any set $U \subseteq V(G)$, let $N(U) = \bigcup_{u \in U} N(u)$ and $N[U] = N(U) \cup U$. For sets $U, W \subseteq V(G)$, we say that U dominates W if $W \subseteq N[U]$. If $U \subseteq V(G)$ dominates V(G), then U is called a dominating set of G. The domination number $\gamma(G)$ is the cardinality of a minimum dominating set of G. A connected dominating set of G is a dominating set of G with the additional property that the induced graph G[D] is connected. The connected domination number $\gamma_c(G)$ is the cardinality of a minimum connected dominating set of G. For any undefined concept the reader may refer to [2] and [6]. When no confusion is possible, we may denote any parameter f(G) of G by G.

A classical result by Berge [1] states that for any graph G, $\gamma(G) \leq n(G) - \Delta(G)$. It seems that Domke et al. [3] were the first to consider the problem of characterizing the graphs with $\gamma = n - \Delta$. They obtained a characterization of the connected bipartite graphs with $\gamma = n - \Delta$. Favaron and Mynhardt [4] continued the study of the problem, and gave the following characterization of graphs with $\gamma = n - \Delta$.

Theorem 1.1 (Favaron and Mynhardt [4])

Let G be a graph and x a vertex of G with maximum degree Δ . Let B = N(x), C = V(G) - N[x] and R = B - N(C). For each $c \in C$, let $B_c = N(c) \cap B$. Then $\gamma = n - \Delta$ if and only if

- (i) C is independent,
- (ii) every vertex of B is adjacent to at most one vertex in C and
- (iii) for every non-empty subset C' of C, the subset $B' = (\bigcup_{u \in C'} B_u) \cup R$ of B is either empty or not dominated by a set consisting of exactly one vertex of each B_u , $u \in C'$.

This characterization does not lead to a polynomial algorithm for determining whether $\gamma = n - \Delta$. One of the main results of this paper shows that the general problem of determining whether $\gamma = n - \Delta$ is co - NP-complete. However, for some classes of graphs characterizations leading to polynomial algorithms can be found.

If G is a disconnected graph with components H_1, \ldots, H_k , $\Delta(G) \geq 1$ and $\gamma(G) = n(G) - \Delta(G)$, then all but one component of G are K_1 -components. This shows that it is sufficient to consider the connected graphs with $\gamma = n - \Delta$.

Favaron and Mynhardt [4] gave the following characterization of connected triangle-free graphs with $\gamma = n - \Delta$.

Theorem 1.2 (Favaron and Mynhardt [4])

Let G denote a connected triangle-free graph, and let v denote any vertex of G with maximum degree. Then $\gamma(G) = n(G) - \Delta(G)$ if and only if

- (i) G is bipartite with partition sets N(v) and V(G) N(v),
- $(ii) \ |V(G)-N(v)| \leq |N(v)|,$
- (iii) $deg(u) \leq 2$ for every $u \in N(v)$, and
- (iv) If $\deg(u) = 2$ for every $u \in N(v)$, then $\deg(u) \ge 2$ for every $u \in V(G) N(v)$.

This characterization gives a polynomial algorithm for recognizing triangle-free graphs with $\gamma = n - \Delta$.

In Section 2 we characterize the regular graphs with $\gamma = n - \Delta$.

We also consider the problem of characterizing the graphs with $\gamma_c = n - \Delta$. Hedetniemi and Laskar [7] characterized the trees with $\gamma_c = n - \Delta$.

Proposition 1.3 (Hedetniemi and Laskar [7])

Let T denote a tree of order $n \geq 2$ and let l(T) denote the number of leaves of T. Then

$$\gamma_c(T) = n - l(T) \le n - \Delta(T)$$

Furthermore, $\gamma_c(T) = n - \Delta$ if and only if T has at most one vertex of degree greater than two.

It follows that $\gamma_c(G) \leq n(G) - \Delta(G)$ for any connected graph G. This seems to be the only work done on the problem of characterizing the graphs with $\gamma_c = n - \Delta$.

In Section 4 we characterize the class of triangle-free graphs with $\gamma_c = n - \Delta$, and in Section 5 we characterize the regular graphs with $\gamma_c = n - \Delta$. In Section 6, we show that, in general, the problem of deciding whether $\gamma_c = n - \Delta$ is co - NP-complete.

2 Regular Graphs with $\gamma = n - \Delta$

Theorem 2.1

Let G denote a connected regular graph. Then $\gamma = n - \Delta$ if and only if G is a complete graph, or n is even and G is a complete graph with a perfect matching removed, i.e. $G = K_n - M$, where M is a perfect matching of K_n .

Proof. First, suppose $\gamma(G)=n-\Delta$. Let v be any vertex of G. Since G is regular, the vertex v has maximum degree. If G-N[v] does not contain any vertices, then $\Delta=n-1$ and so G is complete. Hence assume that G-N[v] contains at least one vertex. By Theorem 1.1, the graph G-N[v] consists of $n-\Delta-1$ isolated vertices. Hence every vertex of V(G)-N[v] has all its neighbours in N(v), and since G is Δ -regular, each vertex of V(G)-N[v] is adjacent to every vertex of V(v). Suppose that there is more than one vertex in V(v). Then there are at least two vertices in V(G)-N[v], say v and v and v is a dominating set of v of cardinality v and so v of v is a dominating set of v of cardinality v and so v of v is the connected v one vertex. This implies v is a contradiction. Hence v is the connected v is a perfect matching of v is easy to see that this graph is isomorphic to v is a perfect matching of v is a perfect matching of v in v is a perfect matching of v in v in v in v in v in v is a perfect matching of v in v in

Conversely, if G is complete, then $\gamma(G) = 1 = n - \Delta$, and if $G = K_n - M$, then $\gamma(G) = 2 = n - \Delta$.

3 Preliminary Results on Graphs with $\gamma_c = n - \Delta$

For extreme values of Δ the situation is simple.

Observation 3.1

Let G denote a connected graph with $\gamma_c(G) = n - \Delta(G)$.

• If $\Delta(G) = 1$, then $G = K_2$.

- If $\Delta(G) = 2$, then $G \in \{C_n, P_n\}$.
- If $\Delta(G) = n 2$, then G can be any connected graph with $\Delta(G) = n 2$.
- If $\Delta(G) = n 1$, then G can be any connected graph with $\Delta(G) = n 1$.

Proposition 3.2

Let G be a connected graph with $\gamma_c(G) = n(G) - \Delta(G)$. Then the following conditions (i-iii) are satisfied for every vertex v of degree $\Delta(G)$.

- (i) All components of G N[v] are paths.
- (ii) For every path $P: u_1, u_2, \dots, u_r$ in G N[v] and $i \in \{2, \dots, r-1\}$, $\deg_G(u_i) = 2$.
- (iii) Each vertex of N(v) is adjacent to at most one vertex of V(G) N[v].

Proof. Assume $\gamma_c(G) = n - \Delta$. Let v denote a vertex of G for which $\deg_G(v) = \Delta$. If $\Delta = n - 1$, then (i-iii) is satisfied. Suppose $\Delta \leq n - 2$ and define $G' = G - N_G[v]$. Let H_1, H_2, \ldots, H_t $(t \geq 1)$ denote the components of G'. Note that in G at least one vertex x_i of H_i is adjacent to at least one vertex y_i in N(v). Amongst all spanning trees of H_i , let T_i be one such that $l(T_i)$ is maximum and note that $l(T_i) \geq \Delta(H_i)$. Some of the trees T_i might be K_1 's or K_2 's. If there are any such trees, then let the trees be indexed such that T_1, \ldots, T_s are K_1 's and K_2 's while T_{s+1}, \ldots, T_t all have more than two vertices. If s = t, then every component of G' is a K_1 or a K_2 and (i) is satisfied. Hence we shall assume s < t.

By Proposition 1.3 we have $\gamma_c(T_i) = n(T_i) - l(T_i)$ for all $i = s + 1, \ldots, t$ (this is not true for K_2). Furthermore, $l(T_i) \geq 2$ for all $i = s + 1, \ldots, t$. We shall construct a connected dominating set D of G. Let v be in D. For each $T_i = K_1$ assign the vertex y_i to D. For each $T_i = K_2$ assign the vertices x_i and y_i to D. For each T_i , (i > s) add y_i , x_i and the vertices of a $\gamma_c(T_i)$ -set to D. Now we obtain

$$\gamma_{c}(G) \leq 1 + \sum_{i=1}^{s} n(T_{i}) + \sum_{j=s+1}^{t} (\gamma_{c}(T_{j}) + 2)
= 1 + \sum_{i=1}^{s} n(T_{i}) + \sum_{j=s+1}^{t} (n(T_{j}) - l(T_{j}) + 2)
\leq 1 + \sum_{i=1}^{s} n(T_{i}) + \sum_{j=s+1}^{t} n(T_{j})
\leq 1 + (n - \Delta - 1).$$
(1)

Observe that if $l(T_i) > 2$ for some i = s + 1, ..., t, then the argument of (1) implies $\gamma_c(G) < n - \Delta$, a contradiction. Hence $l(T_i) = 2$ for all i = s + 1, ..., t and therefore $\Delta(H_i) \leq 2$ for every i = 1, ..., t. This implies that H_i is either a path or a cycle.

If some vertex $u \in V(H_i)$ with $\deg_{H_i}(u) = 2$ is adjacent to some vertex of N(v), then there exists a spanning tree T of G, where $\deg_T(v) = \Delta(G)$ and $\deg_T(u) \geq 3$. Now Proposition 1.3 implies $\gamma_c(G) \leq \gamma_c(T) < n - \Delta$, a contradiction. Hence only vertices $u \in V(H_i)$ with $\deg_{H_i}(u) = 1$ can be adjacent to vertices of N(v). Since G is connected, it follows that some vertex $u \in V(H_i)$ with $\deg_{H_i}(u) = 1$ is adjacent to some vertex in N(v). This implies that H_i is a path and so (i-ii) is satisfied.

If some vertex of N(v) have more than one neighbour in V(G) - N[v], then G has a spanning tree T with at least two vertices of degree greater than two, and so Proposition 1.3 implies $\gamma_c(G) < n - \Delta$, a contradiction. Thus each vertex of N(v) has at most one neighbour in V(G) - N[v]. This establishes (iii).

The induced graph G[N(v)] seem to elude characterization. One way to overcome this problem is to require the graph to be triangle-free, since in a triangle-free graph G the induced subgraph G[N(v)] contains no edge.

4 Triangle-free Graphs with $\gamma_c = n - \Delta$

Theorem 4.1

Let G denote a connected triangle-free graph. Then $\gamma_c(G) = n - \Delta$ if and only if the following conditions (i-iii) are satisfied for every vertex v of degree $\Delta(G)$.

- (i) All components of G N[v] are paths.
- (ii) For every path $P: u_1, u_2, \ldots, u_r$ in G N[v] and $i \in \{2, \ldots, r-1\}$,

$$\deg_G(u_i) = 2.$$

(iii) Each vertex of N(v) is adjacent to at most one vertex of V(G) - N[v].

Proof. If $\gamma_c(G) = n - \Delta$, then it follows from Proposition 3.2 that (i-iii) is satisfied for every vertex v of G with $\deg_G(v) = \Delta$.

Now, suppose (i-iii) is satisfied for some vertex v of G with $\deg_G(v) = \Delta$. If $\Delta \leq 1$, then $G \in \{K_1, K_2\}$, and $\gamma_c(G) = n - \Delta$. If $\Delta = 2$, then G is either a path or a cycle. In either case, $\gamma_c(G) = n - \Delta$. Hence we may assume $\Delta \geq 3$. Let D denote a $\gamma_c(G)$ -set. Suppose that G - N[v] contains precisely one component, say $P^1 : u_1, \ldots, u_r$. Then D contains at least $n(P^1)$ vertices of $V(P^1) \cup N(u_1) \cup N(u_r)$. We shall consider three cases.

- (i) P^1 is a singleton.
- (ii) $n(P^1) \geq 2$ and only one end-vertex of P^1 is adjacent to a vertex of N(v) in G.
- (iii) $n(P^1) \geq 2$ and both end-vertices of P^1 are adjacent to vertices of N(v) in G.

- (a) Since v is not a stem, u_1 must be adjacent to every vertex of N(v).
- (b) If D does not contain v, then D contains every vertex of P^1

Figure 1:

- (i) In this case we have $\Delta = n 2$, and so $\gamma_c(G) > 1$. On the other hand, $\gamma_c(G) \leq n \Delta = 2$ and so $\gamma_c(G) = n \Delta$.
- (ii) Assume that $n(P^1) \geq 2$ and that, in G, only one end-vertex of P^1 is adjacent to a vertex of N(v). Let u_1 denote the vertex of P^1 which is adjacent to one or more vertices of N(v). Now D contains at least $n(P^1) = n \Delta 1$ vertices of $N[P^1]$ in order to dominate P^1 . Suppose that these vertices dominate G. Then there are no leaves adjacent to v, and, since G N[v] contains only one component, $N(v) = N(v) \cap N(u_1)$ (See Figure 1a). But then u_1 has degree $\Delta + 1$ in G, a contradiction.
- (iii) Assume that $n(P^1) \geq 2$ and that, in G, both end-vertices of P^1 are adjacent to vertices of N(v). Again, D contains at least $n(P^1) = n \Delta 1$ vertices of $N[P^1]$ in order to dominate P^1 . If $v \in D$, then $|D| \geq n \Delta$. Hence we may assume that $v \notin D$. Now in order for G[D] to be connected, the set D contains every vertex of P^1 , and for D to dominate v, D contains at least one vertex of $(N(u_1) \cup N(u_r)) \cap N(v)$ (See Figure 1b). This shows that $|D| \geq n \Delta$.

Suppose that G-N[v] contains more than one component. Then D contains v, since otherwise G[D] would be disconnected. Let P^1,\ldots,P^r denote the components of G-N[v]. In order to be a connected dominating set, D contains at least $n(P^i)$ vertices of $N[P^i]$ for the domination of P^i and , since $N[P^1],\ldots,N[P^r]$ are all disjoint, we obtain $|D| \geq 1 + \sum_{i=1}^r n(P^i) = 1 + (n-\Delta-1)$. Hence $\gamma_c(G) = n-\Delta$.

Using Theorem 4.1 it is easy to design a polynomial algorithm for recognition of triangle-free graphs with $\gamma = n - \Delta$.

5 Regular Graphs with $\gamma_c = n - \Delta$

Theorem 5.1

Let G denote a connected regular graph. Then $\gamma_c(G) = n - \Delta$ if and only if G is one of the following: C_n , K_n , or $K_n - M$, where M is a perfect matching in K_n .

Proof. First, suppose that G is a Δ -regular connected graph. Let v denote any vertex of G. If $V(G) - N[v] = \emptyset$, then $\Delta = n - 1$ and G is a complete graph. Suppose $V(G) - N[v] \neq \emptyset$. If $\Delta = 2$, then $G = C_n$, so we may assume $\Delta \geq 3$. Let u_1 denote a vertex of V(G) - N[v] which is adjacent to a vertex of N(v). Proposition 3.2(ii) and the regularity of G implies that V(G) - N[V] contains at most two vertices.

Suppose that u_1 is adjacent to a vertex u_2 in V(G)-N[v]. Now the regularity of G implies that both of u_1 and u_2 are adjacent to precisely $\Delta-1$ vertices of N(v). Since u_1 and u_2 do not have a common neighbour in N(v), we obtain $(\Delta-1)+(\Delta-1)\leq |N(v)|=\Delta$, which implies $\Delta\leq 2$, a contradiction. Hence u_1 has all its neighbours in N(v), i.e. u_1 is adjacent to every vertex of N(v). Then it follows from Proposition 3.2 that V(G)-N[v] only contains this one vertex u_1 . Hence $\Delta=n-2$, and, since G is regular, $G\simeq K_n-M$, where M is a perfect matching in K_n .

6 Complexity Results

In this section, we prove one of the main results of this paper, namely that the problem of deciding whether $\gamma = n - \Delta$ is co - NP-complete.

Decision Problem 6.1 (MDS $(n-\Delta)$)

MINIMUM DOMINATING SET OF CARDINALITY $n-\Delta$

INSTANCE: A graph G.

QUESTION: Does G have a minimum dominating set of cardinality $n(G) - \Delta(G)$?

In order to prove the co-NP-completeness of the above problem, we prove that the **3-SAT** problem can be reduced to the problem of deciding whether $\gamma \leq n-\Delta-1$.

Decision Problem 6.2 (DS $(n - \Delta - 1)$)

DOMINATING SET OF CARDINALITY $\leq n - \Delta - 1$

INSTANCE: A graph G.

QUESTION: Does G have a dominating set of cardinality $\leq n(G) - \Delta(G) - 1$?

For any boolean variable u, let \overline{u} denote the negation of u. Given a set of independent boolean variables $U = \{u_1, u_2, \dots, u_p\}$ (independent in the sense that truth values can be assigned completely arbitrarily to the variables of U), we define a clause C of U to be a 3-element set $\{x_1, x_2, x_3\}$, where either $x_i \in U$ or $\overline{x_i} \in U$ for each $i \in \{1, 2, 3\}$.

Decision Problem 6.3 (3-SAT)

3-SATISFIABILITY

INSTANCE: A set $U = \{u_1, u_2, \dots, u_p\}$ of variables, and a set $C = \{C_1, C_2, \dots, C_q\}$ of clauses.

QUESTION: Does C have a satisfying truth assignment, i.e. an assignment of True and False to the variables in U such that at least one variable in each clause C_i of C is assigned the value True?

Theorem 6.4

The decision problem $\mathbf{DS}(n-\Delta-1)$ is NP-complete.

The proof uses a construction which, to the best of my knowledge, was first introduced by [5].

Proof. The decision problem $\mathbf{DS}(n-\Delta-1)$ is in NP, since if $S\subseteq V(G)$ is a dominating set of cardinality $\leq n(G)-\Delta(G)-1$, then it can be verified in polynomial time that S is a dominating set.

Next, we show that **3-SAT** is reducible to $\mathbf{DS}(n-\Delta-1)$. Given any nontrivial instance \mathcal{C} of **3-SAT**, we construct an instance $G_{\mathcal{C}}$ of $\mathbf{DS}(n-\Delta-1)$ as follows. For each variable u_i , construct a triangle with vertices labelled u_i , \overline{u}_i , v_i . For each clause $C_j = \{u_i, u_k, u_l\}$ add a vertex C_j , and edges $u_i C_j$, $u_k C_j$, $u_l C_j$. Finally, add a vertex x, and join x to every vertex of $V(G_{\mathcal{C}}) - (\{x\} \cup \{v_1, v_2, \dots, v_p\})$ (See Figure 2).

Figure 2: Construction of the graph $G_{\mathcal{C}}$ from an instance \mathcal{C} of the **3SAT** problem.

Notice that the construction of $G_{\mathcal{C}}$ from \mathcal{C} is done in polynomial time.

Claim 6.5

The vertex x is a vertex of maximum degree in $G_{\mathcal{C}}$ and $\Delta(G_{\mathcal{C}}) = n(G_{\mathcal{C}}) - p - 1$.

Argument. Since C is a nontrivial instance, we have $|U| = p \ge 2$. Every vertex C_i has degree four; every vertex v_i has degree two; every vertex u_i (and \overline{u}_i) has degree at most q+3. The vertex x has degree $n(G_C)-p-1=2p+q\ge 4+q$. Hence x is a vertex of maximum degree, and $\Delta(G_C)=n(G_C)-p-1$.

Hence we have $p = n(G_{\mathcal{C}}) - \Delta(G_{\mathcal{C}}) - 1$.

Claim 6.6

The instance C of **3-SAT** has a satisfying truth assignment if and only if the graph $G_{\mathcal{C}}$ has a dominating set of cardinality $\leq n(G_{\mathcal{C}}) - \Delta(G_{\mathcal{C}}) - 1$.

Argument. First, suppose that C has a satisfying truth assignment. We construct a dominating set S as follows: If u_i is True, then assign u_i to S, else assign \overline{u}_i to S. The set S is a dominating set, since (i) each triangle contains a vertex of S, (ii) each C_j is adjacent to a vertex in S, and (iii) certainly x is dominated by S. Since S contains exactly one vertex from each triangle $u_i\overline{u}_iv_i$, and no more vertices, we

obtain $|S| = p = n(G_c) - \Delta(G_c) - 1$. This shows that G_c has a dominating set of cardinality $\leq n(G_c) - \Delta(G_c) - 1$.

Conversely, suppose that $G_{\mathcal{C}}$ has a dominating set S of cardinality $\leq n(G_{\mathcal{C}}) - \Delta(G_{\mathcal{C}}) - 1$. Then S contains at least one vertex from each triangle $u_i\overline{u}_iv_i$, and so $|S| \geq p = n(G_{\mathcal{C}}) - \Delta(G_{\mathcal{C}}) - 1$. It follows that S contains exactly one vertex from each triangle $u_i\overline{u}_iv_i$, and no other vertices. We may assume without loss of generality that $S \subseteq \{u_1,\overline{u}_1,\ldots,u_p,\overline{u}_p\}$. Now $y \in S$ if and only if $\overline{y} \notin S$, and so we obtain a correct assignment of truth values by letting $y \in \{u_1,\overline{u}_1,\ldots,u_p,\overline{u}_p\}$ be assigned the value True if and only if $y \in S$. Every C_j is dominated by S in G. Suppose $w \in S$ is a vertex dominating C_j . Now w was assigned the value True and the construction of $G_{\mathcal{C}}$ implies w is a variable in the clause C_j . Hence the clause C_j is True and so \mathcal{C} has a satisfying truth assignment.

\Diamond

Corollary 6.7

The decision problem $MDS(n - \Delta)$ is co - NP-complete.

Proof. Given any instance G, we find that the answer to the problem $\mathbf{MDS}(n-\Delta)$ is YES if and only if the answer to to $\mathbf{DS}(n-\Delta-1)$ is NO. Hence $\mathbf{MDS}(n-\Delta)$ and $\mathbf{DS}(n-\Delta-1)$ are complementary problems, and so $\mathbf{DS}(n-\Delta-1) \in NPC$ implies $\mathbf{MDS}(n-\Delta) \in co-NPC$.

Decision Problem 6.8 (MCDS $(n-\Delta)$)

MINIMUM CONNECTED DOMINATING SET OF CARDINALITY $n-\Delta$ INSTANCE: A graph G.

QUESTION: Does G have a minimum connected dominating set of cardinality $n(G) - \Delta(G)$?

Decision Problem 6.9 (CDS $(n-\Delta-1)$)

CONNECTED DOMINATING SET OF CARDINALITY $\leq n - \Delta - 1$

INSTANCE: A graph G.

QUESTION: Does G have a connected dominating set of cardinality $\leq n(G) - \Delta(G) - 1$?

Theorem 6.10

The decision problem $CDS(n - \Delta - 1)$ is NP-complete.

The proof is similar to the proof of Theorem 6.4, and so we only present a sketch.

Sketch of proof. The decision problem $\mathbf{CDS}(n-\Delta-1)$ is obviously in NP. The next step is to show that **3-SAT** is reducible to $\mathbf{CDS}(n-\Delta-1)$. Given any instance \mathcal{C} of **3-SAT**, let $G_{\mathcal{C}}$ denote the corresponding instance of $\mathbf{CDS}(n-\Delta-1)$. If $\bigcap_{i=1}^q C_i \neq \emptyset$, then let $G_{\mathcal{C}} = K_3$. If $\bigcap_{i=1}^q C_i = \emptyset$, then construct $G_{\mathcal{C}}$ as follows. For each variable u_i , construct a triangle with vertices labelled u_i , \overline{u}_i , v_i . For each clause $C_j = \{u_i, u_k, u_l\}$ add a vertex C_j , and edges $u_i C_j$, $u_k C_j$, $u_l C_j$. Add edges such

that the induced subgraph on $\{u_1, \overline{u}_1, \ldots, u_p, \overline{u}_p\}$ is a complete graph. Finally, add a vertex x, and join x to every vertex of $V(G_{\mathcal{C}}) - (\{x\} \cup \{v_1, v_2, \ldots, v_p\})$. Now the theorem follows by establishing the two following claims.

Claim 6.11

If $\bigcap_{i=1}^q C_i = \emptyset$, then x is a vertex of maximum degree in $G_{\mathcal{C}}$ and $\Delta(G_{\mathcal{C}}) = n(G_{\mathcal{C}}) - p - 1$.

Claim 6.12

The instance C of **3-SAT** has a satisfying truth assignment if and only if the graph $G_{\mathcal{C}}$ has a connected dominating set of cardinality $\leq n(G_{\mathcal{C}}) - \Delta(G_{\mathcal{C}}) - 1$.

The details are omitted.

Corollary 6.13

The decision problem $MCDS(n - \Delta)$ is co - NP-complete.

Proof. $\mathbf{MCDS}(n-\Delta)$ and $\mathbf{CDS}(n-\Delta-1)$ are complementary problems, and so, since $\mathbf{CDS}(n-\Delta-1) \in NPC$, we obtain $\mathbf{MCDS}(n-\Delta) \in co-NPC$.

References

- [1] C. Berge. Theory of Graphs and its Applications. Methuen, London, 1962.
- [2] R. Diestel. Graph Theory. Springer-Verlag, 1997.
- [3] G. S. Domke, J. E. Dunbar, and L. R. Markus. Gallai-type theorems and domination parameters. *Discr. Math.*, 167/168:237–248, 1997.
- [4] O. Favaron and C. M. Mynhardt. On equality in an upper bound for domination parameters of graphs. *J. Graph Theory*, 24:221–231, 1997.
- [5] M. R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York, 1979.
- [6] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domination in graphs. Marcel Dekker, Inc., 1998.
- [7] S.T. Hedetniemi and R.C. Laskar. Graph Theory and Combinatorics, Connected domination in graphs, pages 209–218. Academic Press, London, 1984.

(Received 26 Mar 2003)