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Abstract

Let (@) denote the cardinality of a minimum dominating set of a graph
G. A well-known upper bound for 7(G), due to Berge (1962), states that
for any graph G of order n and maximum degree A, ¥(G) < n — A.
Similarly, Hedetniemi and Laskar (1984) proved 7.(G) < n — A, where
v.(G) denotes the cardinality of a minimum connected dominating set of
G. In this paper, we characterize the regular graphs with v(G) =n — A,
the regular graphs with 7.(G) = n — A and the triangle-free graphs with
7.(G) = n — A. Moreover, we prove that both the problem of deciding
whether 7(G) = n—A and the problem of deciding whether 7.(G) = n—A
are co — N P-complete.

1 Introduction

We consider finite, simple graphs G = (V(G), E(G)) with maximum degree A(G)
and n(G). Given any subset U C V/(G) the induced subgraph on U is denoted
by G[U]. For any vertex v € V(G), the open neighbourhood N(v) of v is defined
by N(v) = {u € V(G)|uww € E(G)} and the closed neighbourhood N[v] of v is
defined by N[v] = N(v) U {v}. For any set U C V(G), let N(U) = UyepN(u) and
N[U] = N(U)UU. For sets U, W C V(G), we say that U dominates W if W C N[U]J.
If U C V(G) dominates V(G), then U is called a dominating set of G. The domination
number (@) is the cardinality of a minimum dominating set of G. A connected
dominating set of G is a dominating set D of G with the additional property that
the induced graph G[D] is connected. The connected domination number ~.(G) is the
cardinality of a minimum connected dominating set of GG. For any undefined concept
the reader may refer to [2] and [6]. When no confusion is possible, we may denote
any parameter f(G) of G by f.
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A classical result by Berge [1] states that for any graph G, v(G) < n(G) — A(G). It
seems that Domke et al. [3] were the first to consider the problem of characterizing
the graphs with v = n — A. They obtained a characterization of the connected
bipartite graphs with v =n — A. Favaron and Mynhardt [4] continued the study of
the problem, and gave the following characterization of graphs with v =n — A.

Theorem 1.1 (Favaron and Mynhardt [4])

Let G be a graph and z a vertex of G with maximum degree A. Let B = N(z),
C =V(G) — N[z] and R = B — N(C). For each ¢ € C, let B. = N(¢) N B. Then
v =n — A if and only if

(i) C is independent,
(ii) every vertex of B is adjacent to at most one vertex in C' and

(iii) for every non-empty subset C' of C, the subset B' = (UyecB,) U R of B is
either empty or not dominated by a set consisting of exactly one vertex of each
B,,ueC".

This characterization does not lead to a polynomial algorithm for determining whether
v =n — A. One of the main results of this paper shows that the general problem of
determining whether 7 = n — A is co — N P-complete. However, for some classes of
graphs characterizations leading to polynomial algorithms can be found.

If G is a disconnected graph with components Hi,...,Hy, A(G) > 1 and
7(G) = n(G) — A(G), then all but one component of G are Kj-components. This
shows that it is sufficient to consider the connected graphs with v =n — A.

Favaron and Mynhardt [4] gave the following characterization of connected triangle-
free graphs with v =n — A.

Theorem 1.2 (Favaron and Mynhardt [4])
Let G denote a connected triangle-free graph, and let v denote any vertex of G with
maximum degree. Then v(G) = n(G) — A(G) if and only if

(i) G is bipartite with partition sets N(v) and V(G) — N(v),

(ii) [V(G) = N(v)| < [N(v)],

(iii) deg(u) < 2 for every u € N(v), and

(iv) If deg (u) = 2 for every u € N(v), then deg (u) > 2 for every u € V(G) — N(v).
This characterization gives a polynomial algorithm for recognizing triangle-free graphs
with v =n — A.
In Section 2 we characterize the regular graphs with v =n — A.

We also consider the problem of characterizing the graphs with v, = n — A. Hedet-
niemi and Laskar [7] characterized the trees with v, =n — A.
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Proposition 1.3 (Hedetniemi and Laskar [7])
Let T denote a tree of order n > 2 and let I(T') denote the number of leaves of T.
Then

Y(T)=n—=UT)<n—-A(T)

Furthermore, v.(T') = n— A if and only if T has at most one vertex of degree greater
than two.

It follows that 7.(G) < n(G) — A(G) for any connected graph G. This seems to be
the only work done on the problem of characterizing the graphs with v, = n — A.

In Section 4 we characterize the class of triangle-free graphs with 7, =n — A, and in
Section 5 we characterize the regular graphs with 7. = n — A. In Section 6, we show
that, in general, the problem of deciding whether 7. =n — A is co — N P-complete.

2 Regular Graphs with v =n - A

Theorem 2.1

Let G denote a connected regular graph. Then v = n — A if and only if G is a
complete graph, or n is even and G is a complete graph with a perfect matching
removed, i.e. G = K,, — M, where M is a perfect matching of K,,.

Proof. First, suppose 7(G) = n — A. Let v be any vertex of G. Since G is regular,
the vertex v has maximum degree. If G — N|[v] does not contain any vertices, then
A =n—1and so G is complete. Hence assume that G — N[v] contains at least one
vertex. By Theorem 1.1, the graph G — N[v] consists of n — A — 1 isolated vertices.
Hence every vertex of V(G) — N[v] has all its neighbours in N(v), and since G is
A-regular, each vertex of V(G) — Nv] is adjacent to every vertex of N(v). Suppose
that there is more than one vertex in G — N[v]. Then there are at least two vertices
in V(G) — N[v], say a and b, with a common neighbour, say z, in N(v) and so
(V(G) = (N(v) U{a,b})) U{z} is a dominating set of G of cardinality n — A —1, a
contradiction. Hence G — N[v] contains exactly one vertex. This implies A =n — 2,
i.e. G is the connected (n — 2)-regular graph. It is easy to see that this graph is
isomorphic to K,, — M, where M is a perfect matching of K.

Conversely, if G is complete, then y(G) = 1 =n — A, and if G = K, — M, then
WG)=2=n-A. u

3 Preliminary Results on Graphs with 7. =n — A

For extreme values of A the situation is simple.

Observation 3.1
Let G denote a connected graph with v.(G) = n — A(G).

o IfA(G) =1, then G = K,.
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o If A(G) =2, then G € {C,,, P, }.
e If A(G) =n — 2, then G can be any connected graph with A(G) =n — 2.
e If A(G) =n —1, then G can be any connected graph with A(G) =n — 1.

Proposition 3.2
Let G be a connected graph with v.(G) = n(G)—A(G). Then the following conditions
(i-iii) are satisfied for every vertex v of degree A(G).

(i) All components of G — N[v] are paths.
(ii) For every path P : uj,us,...,u, in G— N[v] andi € {2,...,r — 1},

deg g(u;) = 2.

(iii) Each vertex of N(v) is adjacent to at most one vertex of V(G) — N[v].

Proof. Assume 7.(G) =n — A. Let v denote a vertex of G for which deg ¢(v) = A.
If A =n—1, then (i-iii) is satisfied. Suppose A < n — 2 and define G' = G — N¢[v].

Let Hy, H,,...,H; (t > 1) denote the components of G'. Note that in G at least one
vertex x; of H; is adjacent to at least one vertex y; in N(v). Amongst all spanning
trees of H;, let T; be one such that I(T}) is maximum and note that [(T;) > A(H;).
Some of the trees T; might be K;’s or Ky’s. If there are any such trees, then let the
trees be indexed such that T1,...,Ts are K;’s and Ky’s while Tyyq,...,T; all have
more than two vertices. If s = t, then every component of G’ is a Iy or a K and (i)
is satisfied. Hence we shall assume s < t.

By Proposition 1.3 we have .(T;) = n(T;) — I(T;) for all i = s+ 1,...,t (this is not
true for Kj). Furthermore, I(T;) > 2 for all ¢ = s+ 1,...,t. We shall construct a
connected dominating set D of G. Let v be in D. For each T; = K assign the vertex
y; to D. For each T; = K, assign the vertices z; and y; to D. For each T;, (1 > s)
add y;, x; and the vertices of a .(T;)-set to D. Now we obtain

W) € 1+ 0@+ Y (L) +2
YT+ Y () - UT) +2)
< 14 nm+ Y nm)
< 1+(2—A—1)].7s+ (1)

Observe that if [(T;) > 2 for some ¢ = s+ 1,...,t, then the argument of (1) implies
7.(G) < n—A, a contradiction. Hence I(T;) = 2 for all i = s+1,...,t and therefore
A(H;) < 2 for every i = 1,...,t. This implies that H; is either a path or a cycle.



ON EQUALITY IN BERGE’S CLASSICAL BOUND 41

If some vertex u € V(H;) with deg y,(u) = 2 is adjacent to some vertex of N(v),
then there exists a spanning tree T of G, where degr(v) = A(G) and degr(u) > 3.
Now Proposition 1.3 implies 7.(G) < 7.(T) < n — A, a contradiction. Hence only
vertices u € V(H;) with deg g, (u) = 1 can be adjacent to vertices of N(v). Since G
is connected, it follows that some vertex u € V(H;) with deg z,(u) = 1 is adjacent
to some vertex in N(v). This implies that H; is a path and so (i-ii) is satisfied.

If some vertex of N(v) have more than one neighbour in V(G) — N[v], then G has
a spanning tree T with at least two vertices of degree greater than two, and so
Proposition 1.3 implies 7.(G) < n — A, a contradiction. Thus each vertex of N(v)
has at most one neighbour in V(G) — N[v]. This establishes (iii). [ ]

The induced graph G[N(v)] seem to elude characterization. One way to overcome
this problem is to require the graph to be triangle-free, since in a triangle-free graph
G the induced subgraph G[N(v)] contains no edge.

4 Triangle-free Graphs with 7. =n — A

Theorem 4.1
Let G denote a connected triangle-free graph. Then 7.(G) = n — A if and only if the
following conditions (i-iii) are satisfied for every vertex v of degree A(G).

(i) All components of G — N[v] are paths.
(ii) For every path P :uj,uy,...,u, in G — N[v] andi € {2,...,r — 1},

deg G(uz) =2.

(iii) Each vertex of N(v) is adjacent to at most one vertex of V(G) — N[v].

Proof. If 4.(G) = n— A, then it follows from Proposition 3.2 that (i-iii) is satisfied
for every vertex v of G with deg¢(v) = A.

Now, suppose (i-iii) is satisfied for some vertex v of G with degg(v) = A. If A <1,
then G € {K;, Ky}, and 7.(G) = n— A. If A = 2, then G is either a path or a cycle.
In either case, 7.(G) =n — A. Hence we may assume A > 3. Let D denote a .(G)-
set. Suppose that G — N[v] contains precisely one component, say P : uy, ..., u,.
Then D contains at least n(P') vertices of V (P') UN (uy)UN(u,). We shall consider
three cases.

(i) P!is a singleton.
(ii) n(P') > 2 and only one end-vertex of P! is adjacent to a vertex of N(v) in G.

(iii) n(P*) > 2 and both end-vertices of P! are adjacent to vertices of N(v) in G.
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v 2 ;Ul ,Ué ;ul

(a) Since v is not a stem, (b) If D does not contain v,
u; must be adjacent to ev- then D contains every vertex of
ery vertex of N(v). PL.

Figure 1:

(i) In this case we have A = n — 2, and so 7.(G) > 1. On the other hand,
7(G) <n—A=2andso v(G) =n—A.

(ii) Assume that n(P') > 2 and that, in G, only one end-vertex of P' is adjacent
to a vertex of N(v). Let u; denote the vertex of P! which is adjacent to one
or more vertices of N(v). Now D contains at least n(P*) =n — A — 1 vertices
of N[P'] in order to dominate P'. Suppose that these vertices dominate G.
Then there are no leaves adjacent to v, and, since G — N[v] contains only one
component, N(v) = N(v) N N(uy) (See Figure la). But then u; has degree
A 4 1in G, a contradiction.

(iii) Assume that n(P') > 2 and that, in G, both end-vertices of P! are adjacent
to vertices of N(v). Again, D contains at least n(P') = n — A — 1 vertices of
N[P'] in order to dominate P'. If v € D, then |D| > n — A. Hence we may
assume that v ¢ D. Now in order for G[D] to be connected, the set D contains
every vertex of P!, and for D to dominate v, D contains at least one vertex of
(N(u1) UN(u,)) N N(v) (See Figure 1b). This shows that |[D| > n — A.

Suppose that G — N[v] contains more than one component. Then D contains v,
since otherwise G[D] would be disconnected. Let P',..., P" denote the components
of G — N[v]. In order to be a connected dominating set, D contains at least n(P?)
vertices of N[P?] for the domination of P! and , since N[P!|,..., N[P"] are all disjoint,
we obtain |D| > 1+ > "_ n(P") =1+ (n— A —1). Hence 7.(G) =n — A. [ |
Using Theorem 4.1 it is easy to design a polynomial algorithm for recognition of
triangle-free graphs with v =n — A.

5 Regular Graphs with . =n — A
Theorem 5.1

Let G denote a connected regular graph. Then .(G) = n — A if and only if G is one
of the following: C,, K,, or K, — M, where M is a perfect matching in K,.
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Proof. First, suppose that G is a A-regular connected graph. Let v denote any vertex
of G. If V(G) — N[v] = &, then A = n — 1 and G is a complete graph. Suppose
V(G) — N[v] # @. If A =2, then G = C,, so we may assume A > 3. Let u; denote
a vertex of V(G) — N[v] which is adjacent to a vertex of N(v). Proposition 3.2(ii)
and the regularity of G implies that V(&) — N[V] contains at most two vertices.

Suppose that u; is adjacent to a vertex us in V(G) — N[v]. Now the regularity of G
implies that both of u; and us are adjacent to precisely A —1 vertices of N(v). Since
uy and uy do not have a common neighbour in N(v), we obtain (A —1)+ (A —-1) <
|N(v)| = A, which implies A < 2, a contradiction. Hence u; has all its neighbours in
N(v), i.e. uy is adjacent to every vertex of N(v). Then it follows from Proposition 3.2
that V(G) — N[v] only contains this one vertex u;. Hence A = n — 2, and, since G
is regular, G ~ K,, — M, where M is a perfect matching in K,. |

6 Complexity Results

In this section, we prove one of the main results of this paper, namely that the
problem of deciding whether v =n — A is co — N P-complete.

Decision Problem 6.1 (MDS (n — A))

MINIMUM DOMINATING SET OF CARDINALITY n — A

INSTANCE: A graph G.

QUESTION: Does G have a minimum dominating set of cardinality n(G) — A(G)?

In order to prove the co — N P-completeness of the above problem, we prove that the
3-SAT problem can be reduced to the problem of deciding whether v <n — A — 1.

Decision Problem 6.2 (DS (n — A —1))

DOMINATING SET OF CARDINALITY <n-A -1

INSTANCE: A graph G.

QUESTION: Does G have a dominating set of cardinality < n(G) — A(G) — 17

For any boolean variable u, let @ denote the negation of u. Given a set of independent
boolean variables U = {uj,us,...,u,} (independent in the sense that truth values
can be assigned completely arbitrarily to the variables of U), we define a clause C'
of U to be a 3-element set {x;,xs, x5}, where either z; € U or Z; € U for each
i€{1,2,3}.

Decision Problem 6.3 (3-SAT)

3-SATISFIABILITY

INSTANCE: A set U = {uy, u, ..., u,} of variables, and a set C = {Cy,Cy,...,Cy}
of clauses.

QUESTION: Does C have a satisfying truth assignment, i.e. an assignment of True
and False to the variables in U such that at least one variable in each clause C; of C
is assigned the value True 7
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Theorem 6.4
The decision problem DS(n — A — 1) is N P-complete.

The proof uses a construction which, to the best of my knowledge, was first introduced
by [5].

Proof. The decision problem DS(n — A — 1) is in NP, since if S C V(G) is a
dominating set of cardinality < n(G)—A(G)—1, then it can be verified in polynomial
time that S is a dominating set.

Next, we show that 3-SAT is reducible to DS(n — A — 1). Given any nontrivial
instance C of 3-SAT, we construct an instance G¢ of DS(n — A — 1) as follows. For
each variable u;, construct a triangle with vertices labelled wu;, uw;, v;. For each clause
Cj = {w;, ug,w} add a vertex Cj}, and edges u;C;}, u;Cj, wC;. Finally, add a vertex
z, and join z to every vertex of V(Ge¢) — ({z} U {v1,v2,...,v,}) (See Figure 2).

Figure 2: Construction of the graph G¢ from an instance C of the 3SAT problem.

Notice that the construction of G¢ from C is done in polynomial time.

Claim 6.5
The vertex x Is a vertex of maximum degree in G¢ and A(Ge) = n(Ge) —p — L.

Argument. Since C is a nontrivial instance, we have |U| = p > 2. Every vertex C;
has degree four; every vertex v; has degree two; every vertex u; (and ;) has degree
at most ¢ + 3. The vertex x has degree n(G¢) —p—1=2p+¢>4+¢q. Hence z is a
vertex of maximum degree, and A(G¢) = n(Ge) —p — 1. <O

Hence we have p = n(G¢) — A(Ge) — 1.

Claim 6.6
The instance C of 3-SAT has a satisfying truth assignment if and only if the graph
G¢ has a dominating set of cardinality < n(G¢) — A(Ge) — 1.

Argument. First, suppose that C has a satisfying truth assignment. We construct a
dominating set S as follows: If u; is True, then assign u; to S, else assign w; to S.
The set S is a dominating set, since (i) each triangle contains a vertex of .S, (ii)
each Cj is adjacent to a vertex in S, and (iii) certainly z is dominated by S. Since
S contains exactly one vertex from each triangle w;uw;v;, and no more vertices, we
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obtain |S| = p = n(G.) — A(G¢) — 1. This shows that G¢ has a dominating set of
cardinality < n(G¢) — A(G¢) — 1.

Conversely, suppose that G¢ has a dominating set S of cardinality < n(G¢)—A(Ge)—
1. Then S contains at least one vertex from each triangle u;u;v;, and so |S| > p =
n(Ge) — A(Ge) — 1. It follows that S contains exactly one vertex from each triangle
u;u;v;, and no other vertices. We may assume without loss of generality that S C
{u1,@,...,up,wy}. Now y € S if and only if § ¢ S, and so we obtain a correct
assignment of truth values by letting y € {uy,uy,. .., up, u,} be assigned the value
True if and only if y € S. Every C; is dominated by S in G. Suppose w € S is a
vertex dominating C;. Now w was assigned the value True and the construction of
G¢ implies w is a variable in the clause C;. Hence the clause C; is True and so C has
a satisfying truth assignment.

O
|

Corollary 6.7
The decision problem MDS(n — A) is co — N P-complete.

Proof. Given any instance G, we find that the answer to the problem MDS(n— A)
is YES if and only if the answer to to DS(n — A — 1) is NO. Hence MDS(n — A)
and DS(n — A — 1) are complementary problems, and so DS(n — A — 1) € NPC
implies MDS(n — A) € co— NPC. [ ]

Decision Problem 6.8 (MCDS (n — A))

MINIMUM CONNECTED DOMINATING SET OF CARDINALITY n — A
INSTANCE: A graph G.

QUESTION: Does G have a minimum connected dominating set of cardinality n(G)—
A(G) ?

Decision Problem 6.9 (CDS (n — A —1))

CONNECTED DOMINATING SET OF CARDINALITY <n-A -1
INSTANCE: A graph G.

QUESTION: Does G have a connected dominating set of cardinality < n(G)—A(G)—
17

Theorem 6.10
The decision problem CDS(n — A — 1) is N P-complete.

The proof is similar to the proof of Theorem 6.4, and so we only present a sketch.

Sketch of proof. The decision problem CDS(n — A — 1) is obviously in NP.
The next step is to show that 3-SAT is reducible to CDS(n — A — 1). Given any
instance C of 3-SAT, let G¢ denote the corresponding instance of CDS(n — A —1).
If N ,C; # @, then let Ge = K;. If N!_,C; = &, then construct G¢ as follows.
For each variable wu;, construct a triangle with vertices labelled u;,u;, v;. For each
clause Cj = {u;, up, w } add a vertex C;, and edges u;Cj, u,Cj, v,C;j. Add edges such
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that the induced subgraph on {uy,,...,u,,@,} is a complete graph. Finally, add
a vertex x, and join x to every vertex of V(Ge¢) — ({} U {v1,vs,...,v,}). Now the
theorem follows by establishing the two following claims.

Claim 6.11
IfN!_,C; = @, then x is a vertex of maximum degree in G¢ and A(Ge) = n(Gc¢)—p—1.

Claim 6.12
The instance C of 3-SAT has a satisfying truth assignment if and only if the graph
G¢ has a connected dominating set of cardinality < n(G¢) — A(G¢) — 1.

The details are omitted. [ |

Corollary 6.13
The decision problem MCDS(n — A) is co — N P-complete.

Proof. MCDS(n — A) and CDS(n — A — 1) are complementary problems, and so,
since CDS(n — A — 1) € NPC, we obtain MCDS(n — A) € co— NPC. [ ]
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