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1 Introduction and the main result

An 0t order linear recurrence is a sequence in which each is a linear combination of

the ¢ previous terms. The symbolic representation of an ¢th order linear recurrence
defined by
¢
an, = ijan—j = P1p—1 + P2lp—2 + *** + DeQp—y, (1)
j=1
is (an(co, ..., Ce—15D1,- - -+ D) )n>0, OF briefly (a,)n>0, where the p; are constant coef-
ficients, with given a; = ¢; for all j = 0,1,...,¢ — 1, and n > {; in such a context,

(@n)n>o is called an ¢-sequence.

In the case ¢ = 2, this sequence is called Horadam’s sequence and was introduced, in
1965, by Horadam [4, 5], and it generalizes many sequences (see [1, 6]). Examples of
such sequences are the Fibonacci numbers (Fy,),>0, the Lucas numbers (Ly)n>0, and
the Pell numbers (P,),>0, when one has the following initial conditions: p; = py =
ca=1,c0=0;pp=py=c1=1,c0 =2;and p; =2, py = c; = 1, ¢g = 0; respectively.
In 1962, Riordan [8] found the generating function for powers of Fibonacci numbers.
He proved that the generating function Fy(z) =Y, ., Ffz" satisfies the recurrence
relation

[k/2]
(1 - gz + (=1)*2?) Fy(z) = 1 + MEZ a“ —L Fr2j((=1)'x)

for k > 1, where ay = 1, az = 3, as = a5, + as_» for s > 3, and (1 — 2 — 2?77 =
> iso @rjat 2. Horadam [5] gave a recurrence relation for Hy(z) (see also [3]).
Haukkanen [2] studied linear combinations of Horadam’s sequences and the gener-
ating function of the ordinary product of two of Horadam’s sequences. Recently,
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Mansour [7] found a formula for the generating functions of powers of Horadam’s
sequence. In this paper we are interested in studying the generating function for
squaring the terms of the (-sequence, that is,

A[(SU) - A[(SU;C(), ey Cp—13P1y - - apl) - Zai(cm ey Cp—13P1y - - 7pf)xn'
n>0

The main result of this paper can be formulated as follows.
Let A[ = (A[(i,j))ogm‘g[_l be the ¢ x ¢ matrix

1= i, 1=3=0
—2zv;, i=0and1<j<(-1
A(i,j) =8 —pirt, 1<i<l{—-landj=0
0ij — Pi—j@ ™) = pipjat, 1<i<l—land1<j<(l—1
5, 1<i<fl{—-landl+1-i<j</(-1

where v; is given by

Vj = pipjs1 + Papjsa® + -+ + peopert

o B . 1, ifi=j
forall j =1,2,...,0 -1, we define p; = 0 for ¢ <0, and ¢ ; —{ 0, ifitj
Let F[ = (F[(i,j))ogm‘g[_l be the ¢ x ¢ matrix

T Y m(ch —wiy)a?, i=j=0
To(i,5) = § o™ S i eglconi — wors 1)’y j=0and 1<i<l—1
Ay(i,5), 0<i</l—land1<j</(-1
where wj; is given by
j+1

Wj = P16 + P2Cj—1 + -+ - +Pjt1Co = ZpstJrlfsv
s=1

for j=0,1,...,¢ —2 with w_; = 0.

Theorem 1.1 The generating function Ay(z) is given by
det(l“g)
zdet(A,)

The paper is organized as follows. In Section 2 we give the proof of Theorem 1.1 and
in Section 3 we give some applications for Theorem 1.1.
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2 Proofs

Let (ay)n>0 be a sequence satisfying Relation (1) and ¢ be any positive integer. We
define a family {f(n)}5_} of sequences by

fd(n) = Ap—10p—1-5,

and a family {F,(z)}5_% of generating functions by

= Z An—10p—1-gT". (2)

n>1

Now we state two relations (Lemma 2.1 and Lemma 2.2) between the generating
functions Fy(z) and Fy(z) = xA(x) that play the crucial roles in the proof of
Theorem 1.1.

Lemma 2.1 We have
¢ -1 -1
x) Zp?m] + 2z Z v Fj(z) + o Z(cf - w]zfl)x]
j=1 j=1 Jj=0
Proof. Since the sequence (an)n>o satisfying Relation (1) we get that

= Zpﬁai_j +2 Z PiPjOn—iGn—j,

j=1 1<i<j<!t

~

for all n > ¢. Multiplying by ™ and summing over n > ¢ together with the following
facts:

> =1
. . ) —i
3. Z an_ian_ja:" =z Z fj_i(n—z)m" = .1‘171 Fj_i(l‘) — Z ad_lad_]—+i_1md s
n>{ n>4+1 d=j—i+1
we have that
¢
Fy(z) = Fo(z) Yo p $]+2 > plp]xF] i(@)
j=1 1<z<]<l
¢ ; ¢ - =i
+>ai 2l = 3 pr ai @t =2 3 Y PiPjAd—104—(j—ij—1 2T
j=1 j=1li=1 1<z<]<ld =j—i+1
¢ )
= Fo(x )ijxj+2w2] 10 Fj(w )+w2(a —wi_y)a’.
Hence, using the fact that a; = ¢; for j =0,1,...,¢ —1 we obtain the desired result.

O
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Lemma 2.2 Foranyi=1,2,...,0—1,

i —1-i
F(z) = pie' Fo(x) + ) (pi 0™ + parga) Fy2) + 2 Y7 ejlcany = wiryr)a.
j=1 Jj=0
Proof. By direct calculations we have for n > ¢ + 1,

¢
fi(n) = Ap—1Ap—1—i = ijanflfjan—l—ﬁ
Jj=1

equivalently, fi(n) =

prfici(n = 1)+ pafica(n —2) + -+ pifo(n — i) + pira fr(n — i) + - + pefe—i(n — ).

As in Lemma 2.1, multiplying by z" and summing over n > ¢+ 1 we get

¢ , i ] —j
Fi(x) = X ajaa0-27 = ) pja! (FM(I) - X adlad(z‘j)lxd)
J=itl Jj=1 d=i-j+1
¢ _ i ;
+ Z ijCl Fj,i(:v) - Z Ad—1Ad—(j—i)—1L
j=i+1 d=j—i+1
The rest is easy to check from the definitions. a

Proof. (Theorem 1.1) Using the above lemmas together with the definitions we have
Ay - [Fo(x), Fi(2), Fy(), ..., Fio(2)] T = w,
where the vector w is given by
35 0(e) — wjm)e!
@’ ;J; ¢j(Cj — wy)z’
2370 ¢i(Cjra — wipa)a?
2 Y0 g ei(Cire — wipeo)a!

Hence, the solution of the above equation gives the generating function Fy(z) =
det(Iy) . det(I'y)

ETE Tdei(Ag 85 claimed in Theorem 1.1. O

equivalently, Ay(z) =

3 Applications

In this section we present some applications of Theorem 1.1.
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Fibonacci numbers. Let Fj, be the nth k_Fibonacci number which is given by

k
Fpn= E Frnj,
s

for n > k, with Fjy =0 and Fy; = 1for j =1,2,...,k — 1; in such a context, F},,
F; ., and Fy , are usually called the nth Fibonacci numbers, tribonacci numbers, and
tetranacci numbers; respectively. Using Theorem 1.1 with ¢g = 0 and

=== a=p=pr=--=p;=1

gives the generating function )° .o Fi; 2" (see Table 1).

| & | The generating function ) ., Fy, 2"
2 z(1—z)
(I+z)(1-3z+z2?)
z(l—z—z2—23)
(I+z+z%2—2%)(1-3z—22—z3)
z(1—z—5z2—22%—2*—22°+327+28)
1-2x—422—523—8z%+4x5+626+28 — 10
z(1—z—522-122% 8210257251727 - 828 +132°+1021° + 3211 + 9212 +4213)
1—2z—402—Ted— 1121 — 16254405+ 707 +4208+42°+ 7210 —2 12213 15

S

(S

kth

Table 1: The generating function for the square of the -Fibonacci numbers

From Table 1, for k£ = 3 we obtain

2o z(1 — 2z + 22% + 1223 + 82° + 22° + 427 + 32 + 229)
E n r = .
8n (22 —a? —z — 1)*(23 + 22 + 3z — 1)?

n>0

Pell numbers. Let P, be the nth f-Pell number which is given by

k
Pk,n - 2Pk,n71 + Z Pk,nfja
j=2
forn > k, with P,; = 1for j = 0,1,...,k — 1; in such a context, P, is usually
called the nt! Pell number. Using Theorem 1.1 with ¢; = 1for j = 0,1,...,k—1and
pj = 1for j =1,2,...,k gives the generating function }_ ., P;,z" (see Table 2).

From Table 2, for k£ = 2 we have

angnxn _ x(1 = 2z + 1022 — 223 + 2*)

s (z +1)%(z% — 6z + 1)?
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» : : 2 n
| k | The generating function ) 5, P2, @
2 14z 22
(14+z)(1-6z+z2)
1-4z—1122—1323 524425
(1-6zx—3z2—23)(1—z+222—23)
4 1-4z—1222 2523 - 2924 — 3259251227+ 13284-92°
(1—52—822—132%—20x+225+1425+27+28—210)
5 (142) (9213 +422 42211 4132104 62° — 2628 —627 —22% —52° — 142 —92% —32% —2x+1)
1-20—422—Tz%— 11?1 —1625+420+ 707 +428 +42° + 7010 —g12— 13 — 515

Table 2: The generating function for the square of the &tE_Pell numbers
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