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Abstract

The basis number b(G) of a graph G is defined to be the least integer d
such that G has a d-fold basis for its cycle space. In this paper we: give
an upper bound of the basis number of the direct product of trees; classify
the trees with respect to the basis number of the direct product of trees
and paths of order greater than or equal to 5; give an upper bound of the
basis number of the direct product of bipartite graphs; and investigate
the basis number of the direct product of a bipartite graph and a cycle.

1 Introduction

Unless otherwise specified, all graphs considered here are finite, undirected and sim-
ple. Our terminology and notations will be standard except as indicated. For un-
defined terms, see [6]. For a given graph G, we denote the vertex set of G by V (G)
and the edge set by E(G). Given a graph G, let e1, e2, . . . , e|E(G)| be an ordering of
its edges. Then a subset S of E(G) corresponds to a (0, 1)-vector (b1, b2, . . . , b|E(G)|)
in the usual way with bi = 1 if ei ∈ S, and bi = 0 if ei /∈ S. These vectors form
an |E(G)|-dimensional vector space, denoted by (Z2)

|E(G)|, over the field of integer
numbers modulo 2. The vectors in (Z2)

|E(G)| which correspond to the cycles in G
generate a subspace called the cycle space of G and denoted by C(G). We shall say
that the cycles themselves, rather than the vectors corresponding to them, generate
C(G). It is well-known that

dim C(G) = γ(G) = |E(G)| − |V (G)| + r (1)

where γ(G) is the cyclomatic number and r is the number of connected components.
A basis B for C(G) is called d-fold if each edge of G occurs in at most d of the

cycles in the basis B. The basis number b(G) of G is the least non-negative integer d
such that C(G) has a d-fold basis. The fold of an edge e in a set B ⊂ C(G), denoted
by fB(e), is the number of cycles in B containing e. The required basis of G is a
basis B of b(G)-fold. Now, let ϕ : G → H be an isomorphism and B be a (required)
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basis of G; B′
= {ϕ(c) | c ∈ B} is called the corresponding (required) basis of B

in H.
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The direct product G =

G1 ∧ G2 is the graph with the vertex set V (G) = V1 × V2 and the edge set E(G) =
{(u1, u2)(v1, v2) | u1v1 ∈ E1 and u2v2 ∈ E2}. From the definition above, it is clear
that (i) dG1∧G2(x, y) = dG1(x)dG2(y) and (ii) |E(G1 ∧ G2)| = 2|E1||E2| where dG(v)
is the degree of the vertex v in the graph G. The largest degree of the vertices of G
will be denoted by ∆(G). Also, we will denote a path by P or P ∗, a cycle by C or
C∗, a star by S or S∗, and a tree by T and T ∗.

The first result concerning the basis number of a graph was obtained in 1937 by
MacLane who proved the following theorem:

Theorem 1.1 (MacLane) A graph G is planar if and only if b(G) ≤ 2.

Schmeichel [8] proved the existence of graphs that have arbitrary large basis
number.

Theorem 1.2 (Schmeichel) For any positive integer r, there exists a graph G with
b(G) ≥ r.

Also, Schmeichel [8] proved that for n ≥ 5, b(Kn) = 3 where Kn is the complete
graph of n vertices, and for m, n ≥ 5, b(Kn,m) = 4 except possibly for K6,10, K5,n and
K6,n(n = 5, 6, 7, 8) where Kn,m is the complete bipartite graph of n and m vertices.
Banks and Schmeichel [3] proved that b(Qn) = 4 where Qn is the n-cube.

Ali [1] investigated the basis number of the direct product of some special graphs.
In fact he proved that for all |V (C)| ≥ 3 and |V (P )| ≥ 2, b(C ∧ P ) ≤ 2; for all
|V (P )| ≥ 3 and |V (P ∗)| ≥ 2, b(P ∧ P ∗) ≤ 2, and for all |V (C)| and |V (C∗)| ≥
3, b(C ∧ C∗) = 3.

Al-Rhayyel and Jaradat [2] proved the following results concerning the basis
number of the direct product of some special graphs: (i) b(P ∧ S) = 2, if |V (S)| ≥ 4
and |V (P )| ≥ 3 (ii) b(C ∧ S) = 2, if |V (C)| ≥ 4 and |V (S)| ≥ 3 (iii) b(θ ∧ S) = 3, if
|V (θ)| ≥ 4 and |V (S)| ≥ 4 where θ is the theta graph, (iv) b(S ∧ S∗) ≤ 4, and the
equality holds for each |V (S)| ≥ 6 and |V (S∗)| ≥ 6 except possibly |V (S)| = 6 and
|V (S∗)| = 6, 7, 8, 9 and |V (S)| = 7 and |V (S∗)| = 6, 7, 8, 9, 11.

Al-Rhayyel and Jaradat [2] proved the following result:

Lemma 1.1 (Al-Rhayyel and Jaradat) Let G and H be two graphs. If ∆(G) and
∆(H) ≥ 3, then b(G ∧ H) ≥ 3.

We remark that knowing the number of components in a graph is very important
for finding the dimension of the cycle space as in (1), so we need the following result
from [6].

Theorem 1.3 ([6]) Let G and H be two connected graphs. Then G∧H is connected
if and only if at least one of them contains an odd cycle.
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Our scope of investigations extend well beyond the special cases given in [1]
and [2]. We give an appropriate upper bound for the basis number of the direct
product of two bipartite graphs and classify the trees with respect to b(T ∧P ) where
|V (P )| ≥ 5, which were previously unavailable even in relatively simple settings. We
also investigate the basis number of the direct product of cycles and trees.

Our method in this paper not only allows the systematic treatment of the direct
product of graphs, but also has found applications in some other graph products
which will appear in subsequent papers.

2 The Upper Bound of the Basis Number of the

Direct Product of Trees

It is worth pointing out that the question regarding the basis number of the direct
product of two trees cannot be resolved directly using existing methods, simply
because the trees do not have a uniform form. Therefore, we shall first make an
appropriate decomposition for any tree. To achieve this, we introduce the following
definition which will be of great use in our work.

Definition 2.1 Let G be a connected graph of order greater than 2. A sequence
S(G) =

{
P

(1)
3 , P

(2)
3 , . . . , P

(m)
3

}
is called a path-sequence of G if (i) P

(i)
3 is a path of

length 2 for each i = 1, 2, . . . , m, and (ii)
⋃m

i=1 E(P
(i)
3 ) = E(G).

Proposition 2.1 For each tree T of order ≥ 3, there is a path-sequence S(T ) ={
P

(1)
3 , P

(2)
3 , . . . , P

(m)
3

}
such that (i) every edge uv ∈ E(T ) appears in at most three

paths of S(T ), (ii) each P
(j)
3 contains one edge which is not in

⋃j−1
i=1 P

(i)
3 , (iii) if uv

appears in three paths of S(T ), then the paths have forms of either uva, uvb and cuv
or auv, buv and uvc, (iv) for each end point v, the edge vv∗ appears in at most two
paths of S(T ), (v) m = |V (T )| − 2 = |E(T )| − 1.

To understand the above proposition and for later use, let us consider the follow-
ing examples:

Example 2.1 Let T be a path of order n, i.e., T = P = v1v2 . . . vn. Then we can
choose S(T ) =

{
P

(1)
3 = v1v2v3, P

(2)
3 = v2v3v4, . . . , P

(n−2)
3 = vn−2vn−1vn

}
.

Example 2.2 Let T be a star with V (T ) = {v1, v2, . . . , vn}, and dT (v1) = n − 1.

Then we can choose S(T ) =
{
P

(1)
3 = v2v1v3, P

(2)
3 = v3v1v4, . . . , P

(n−2)
3 = vn−1v1vn}.

A tree T consisting of n equal order paths
{
P (1), P (2), . . . , P (n)

}
is called an n-

special star if there is a vertex, say v1, such that v1 is an end vertex for each path in{
P (1), P (2), . . . , P (n)

}
and V (P (i)) ∩ V (P (j)) = {v1} for each i �= j.
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Example 2.3 Let T be a 3-special star of order 7 in which P (1) = v1v2v5, P (2) =
v1v3v6, P (3) = v1v4v7. Then we can choose S(T ) =

{
P

(1)
3 = v5v2v1, P

(2)
3 = v2v1v4,

P
(3)
3 = v1v4v7, P

(4)
3 = v4v1v3, P

(5)
3 = v1v3v6

}
.

Note that, in all the above examples, S(T ) satisfies the conditions of Proposition
2.1, and it is easy to see that S(T ) is not unique.

Now, let T be a tree of order ≥ 3. Let Av = {v∗∗ | v∗v, v∗∗v∗ ∈ E(T ) and dT (v∗∗)
> 1} and EV = {v ∈ V (T ) | v is an end point of T and either of the following (i)
or (ii) holds}. (i) dT (v∗) = 2 where vv∗ ∈ E(T ). (ii) dT (v∗) ≥ 3 and |Av| ≤ 1 where
vv∗ ∈ E(T ). Then it is clear that EV �= ∅.
Proof of Proposition 2.1. The proof is by mathematical induction on |V (T )|. If

|V (T )| = 3, then T is a path of length 2. In this case we take S(T ) = {P (1)
3 = T}.

Now, assume T is a tree of order n + 1. Let v ∈ EV and v∗ be a vertex such that
vv∗ ∈ E(T ). Set T

′
= T − v. By induction, there is a path-sequence S(T

′
) satisfying

our proposition. To this end, we need to consider two cases:
Case 1. dT (v∗) = 2. Then v∗ is an end point of T

′
. Thus there is an edge v∗∗v∗

appearing at most twice in S(T
′
). If v∗∗v∗ appears in one path, then the path has

the form av∗∗v∗; if it appears in two paths, then the paths have the following forms
av∗∗v∗, and bv∗∗v∗. Therefore we take S(T ) = S(T

′
) ∪ {P (n−1) = v∗∗v∗v}.

Case 2. dT (v∗) ≥ 3. Then at most one vertex v∗∗ ∈ V (T ) has the properties
v∗v∗∗ ∈ E(T ) and dT (v∗∗) > 1. Let A = {vn1, vn2 , . . . , vnr} be the set of all vertices
adjacent to v∗ other than v∗∗. Now, we need to consider three subcases:

Case 2a. v∗v∗∗ appears in S(T
′
) once. Then we take S(T ) as in Case 1.

Case 2b. v∗v∗∗ appears in S(T
′
) twice, say, P

(g1)
3 and P

(g2)
3 . Then we have two

subsubcases to consider:
Case 2b1. If either P

(g1)
3 = vni0

v∗v∗∗ and P
(g2)
3 = av∗∗v∗, or P

(g1)
3 = av∗∗v∗ and

P
(g2)
3 = bv∗∗v∗, then take S(T ) as in Case 1.

Case 2b2. If P
(g1)
3 = v∗∗v∗vni0

and P
(g2)
3 = v∗∗v∗vni1

, then we claim that there

exists 1 ≤ i∗ ≤ r, such that v∗vni∗ appears in at most one path of S(T
′
). Thus, we

take S(T ) = S(T
′
) ∪ {P (n−1)

3 = vv∗vni∗}. The proof of the claim goes as follows:

Let A = {P (i0)
3 , . . . , P

(ir)
3 } ⊂ S(T ) be the set of all paths of the form vni

v∗vnj
where

i �= j. It is an easy matter to see that any path in S(T
′
) containing v∗vni

is a path in
A. Thus, if each edge of the form v∗vni

appears two times (1 ≤ i ≤ r) in the paths
of S(T

′
), then any ordering of S(T

′
) must contain a path in A, and both of its edges

appear in the previous paths, which is a contradiction.
Case 2c. If v∗∗v∗ appears three times, say, P

(g1)
3 , P

(g2)
3 , and P

(g3)
3 , then either

(i) P
(g1)
3 = v∗∗v∗vni0

, P
(g2)
3 = av∗∗v∗, and P

(g3)
3 = bv∗∗v∗, or (ii) P

(g1)
3 = v∗∗v∗vni0

,

P
(g2)
3 = v∗∗v∗vni1

and P
(g2)
3 = av∗∗v∗. In both (i) and (ii), we can prove the same

claim as in Case 2b2, and take the same S(T ) as in Case 2b2.

Remark 2.1 From Proposition 2.1 and its proof it is an easy matter to see that
there are at least two edges of T , each of which appears in only one path of S(T ).

Now, let P
(i)
3 = aibici and Q

(j)
3 = djejfj be two paths. Let
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Bi,j = {(ai, ej)(bi, dj)(ci, ej)(bi, fj)(ai, ej)}.
Then Bij is a basis of P (i) ∧ Q(j) and also |Bi,j| = 1. Therefore Bi,j is a 1-fold basis.

Lemma 2.1 For every two trees T1 and T2 of order ≥ 3, and for every path-sequences
S( T1 ) =

{
P

(1)
3 , P

(2)
3 , ..., P

(|V (T1)−2|)
3

}
and S( T2 ) =

{
Q

(1)
3 , Q

(2)
3 , ..., Q

(|V (T2)−2|)
3

}
of

T1 and T2 as in Proposition 2.1, respectively, we have B =
⋃(|V (T2)|−2)

j=1

⋃(|V (T1)|−2)
i=1 Bi,j

is linearly independent.

Proof. Let Bi =
⋃(|V (T2)|−2)

j=1 Bi,j . Since each Q
(j)
3 contains an edge, say ejfj , which

is not in ∪(j−1)
k=1 E(Q

(k)
3 ), the cycle of Bi,j contain (ai, ej)(bi, fj) and (bi, fj)(ci, ej) each

of which is not in any cycle of
⋃(j−1)

k=1 Bi,k. Thus, for each i = 1, 2, . . . , |V (T2)| − 2, Bi

is linearly independent. Similarly, each path P
(i)
3 contains an edge, say bici, which is

not in ∪(i−1)
k=1 E(P

(k)
3 ) and each linear combination of cycles of Bi must contain at least

one edge of (bi, dj)(ci, ej) and (ci, ej)(bi, fj) for some j which are not in any cycle of⋃(i−1)
k=1 Bk. Therefore B is linearly independent.

As we mentioned before, one of the important steps in our work is to determine
the number of components of the direct product of two connected graphs, so we give
the following result.

Lemma 2.2 Let T1 and T2 be any pair of trees of order greater than or equal to 2.
Then T1 ∧ T2 consists of two components.

Proof. Note that the size of B in Lemma 2.1 is

|B| = (|E(T1)| − 1)(|E(T2)| − 1)

= |V (T1)||V (T2)| − 2|V (T1)| − 2|V (T2)| + 4.

Since B is linearly independent,

|B| ≤ dim C(T1 ∧ T2)

= 2(|V (T1)| − 1)(|V (T2) − 1) − |V (T1)||V (T2)| + r

= |V (T1)||V (T2)| − 2|V (T1)| − 2|V (T2)| + 2 + r

where r is the number of components. Thus we have 2 ≤ r (this inequality also holds
from Theorem 1.3). Thus, it remains to prove r ≤ 2. Choose u1u2 ∈ E(T1) and v1v2 ∈
E(T2) such that u1 and v1 are end points of T1 and T2, respectively. Then u1u2∧v1v2

consists of two components: G1 = (u1, v1)(u2, v2) and G2 = (u1, v2)(u2, v1). Let
(u, v) ∈ V (T1 ∧ T2). We show that there is a path joining (u, v) with either (u1, v2)
or (u1, v1). Since T1 and T2 are connected, there are two paths: P1 = u1u2u3 . . . un

of T1 where un = u,and P2 = v1v2v3 . . . vm of T2 where vm = v. According to the
relationship between m and n, there are three cases to consider:
Case 1. m = n. Then take
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P = (u1, v1)(u2, v2) . . . (un−1, vn−1)(un, vn).

Case 2. n > m. Then this case splits into two subcases:
Case 2(a). s = n − m is odd. Then take

P = (un, vm)(un−1, vm−1) · · · (us+1, v1)(us, v2)(us−1, v1) . . . (u3, v2)(u2, v1)(u1, v2).

Case 2(b). s = n − m is even. Then take

P = (un, vm)(un−1, vm−1) · · · (us+1, v1)(us, v2)(us−1, v1) . . . (u3, v1)(u2, v2)(u1, v1).

Case 3. n < m. Then this case splits into two subcases:
Case 3(a). s = m − n is odd. Then take

P = (un, vm)(un−1, vm−1) · · · (u1, vs+1)(u2, vs)(u1, vs−1) . . . (u1, v4)(u2, v3)(u1, v2).

Case 3(b). s = m − n is even. Then take

P = (un, vm)(un−1, vm−1) · · · (u1, vs+1)(u2, vs)(u1, vs−1) . . . (u1, v3)(u2, v2)(u1, v1).

Thus, we have r = 2.
The following result follows immediately from Lemmas 2.1 and 2.2 and Equa-

tion (1).

Corollary 2.1 For every pair of trees T1 and T2, the set B in Lemma 2.1 is a basis
for C(T1 ∧ T2).

Theorem 2.1 For every pair of connected graphs G and H, G ∧ H is connected if
and only if one of them contains an odd cycle. If both of them are bipartite graphs,
then G ∧ H consists of two components.

Proof. The first part of this theorem directly follows from Theorem 1.3. To prove
the second part of the theorem, first we prove it in the case H = T . Let T ∗ be a
spanning tree of the bipartite graph G obtained by the usual way. Then by Lemma
2.1, we have that T ∗ ∧ T consists of two components G1 and G2. To this end, it
is sufficient to show that if (u, v)(u∗, v∗) ∈ E(G ∧ T ) with uu∗ ∈ E(G) \ E(T ∗),
then (u, v) and (u∗, v∗) belong to the same component. Since G is a bipartite graph,
any cycle C is of even length and so the path P = uu2u3 . . . usu

∗ of T ∗ is an odd
length path. Hence (u, v)(u2, v

∗)(u3, v) · · · (us−1, v)(u∗, v∗) is a path in one of the
components of T ∗ ∧ T . Thus, G ∧ T consists of two components. To prove the
theorem for any bipartite graph H we apply the same argument as in the above on
G ∧ T ∗∗where T ∗∗ is a spanning tree for H.

Lemma 2.3 For each graph H, H ∧ K2 is a bipartite graph where K2 = vv
′
is a

complete graph of order 2.

Lemma 2.4 Let H be a bipartite graph, and H1 and H2 be the two components of
H ∧ K2. If (u, v) ∈ H1 (or H2), then (u, v

′
) ∈ H2 (or H1) where vv

′
= K2.
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Proof. Assume that (u, v) and (u, v
′
) belong to the same component, say, H1. Let

P = (u, v)(u2, v
′
) · · · (un−1, v)(u, v

′
), a subgraph of H ∧ K2, be a path which joins

these two points. Now, we claim that P ∗ = uu2 . . . un−1u is a cycle which contradicts
the fact that H has no odd cycle. Suppose not. Then there are i < j such that
ui = uj, ul �= uk and the elements of both of {uiui+1 . . . uj−1} and {ui+1ui+2 . . . uj}
are distinct. To this end, either (ui, v)(ui+1, v

′
) . . . (uj, v

′
) is a path subgraph of P

or (ui, v
′
)(ui+1, v) . . . (uj, v) is a path subgraph of P . Thus, P ∗∗ = uiui+1 . . . uj is an

odd cycle in H. This is a contradiction.

Lemma 2.5 Let H be a bipartite graph. Then each of the two components H1 and
H2 of H ∧ K2 is isomorphic to H.

Proof. Note that V (H ∧K2) = V (H1)∪V (H2) and |V (H∧K2)|
2

= |V (H1)| = |V (H2)|.
Now define ϕi : V (Hi) → V (H) by ϕi((u, v)) = u and ϕi((u, v

′
)) = u for i = 1, 2. It

is an easy matter to see that ϕ1 and ϕ2 are bijections and preserve the adjacency.
So far, we have furnished the necessary ground to deal with the basis number

of the direct product of trees.

Theorem 2.2 For every pair of trees T1 and T2, we have b(T1 ∧ T2) ≤ 5.

Proof. According to the order of trees, we need to consider two cases:
Case 1. One of them is of order less than or equal to 2. Then T1 ∧T2 is either a null
graph or by Lemma 2.5 consists of two vertex disjoint components each of which is
a tree. In both cases b(T1 ∧ T2) = 0.
Case 2. Both of them are of order at least 3. Then it suffices to prove that
the linearly independent set B is 5-fold where B is given as in Lemma 2.1. Let
S(T1) = {P (1)

3 , P
(2)
3 , . . . , P

(|V (T1)|−2)
3 } and S(T2) = {Q(1)

3 , Q
(2)
3 , . . . , Q

(|V (T2)|−2)
3 } be two

path-sequences of T1 and T2 as in Proposition 2.1. We handle the worst case where
each of S(T1) and S(T2) contains at least one edge which appears in three paths.

To this end, suppose that ab ∈ E(T1) appears in the following paths: P
(1)
3 = abc,

P
(2)
3 = bad, and P

(3)
3 = eab, and fg ∈ E(T2) appears in the following paths: Q

(1)
3 =

fgh, Q
(2)
3 = gfk, and Q

(3)
3 = fgl. It suffices to show that fB((a, f)(b, g)) ≤ 5 and

fB((a, g)(b, f)) ≤ 5. To achieve that, we list all the possibilities of Bi,j :

B1,1 = (a, g)(b, f)(c, g)(b, h)(a, g),

B1,2 = (a, f)(b, g)(c, f)(b, k)(a, f),

B1,3 = (a, g)(b, f)(c, g)(b, l)(a, g),

B2,1 = (b, g)(a, f)(d, g)(a, h)(b, g),

B2,2 = (b, f)(a, g)(d, f)(a, k)(b, f),

B2,3 = (b, g)(a, f)(d, g)(a, l)(b, g),

B3,1 = (e, g)(a, f)(b, g)(a, h)(e, g),

B3,2 = (e, f)(a, g)(b, f)(a, k)(e, f),

B3,3 = (e, g)(a, f)(b, g)(a, l)(e, g).
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Note that (a, f)(b, g) appears in B1,2, B2,1, B2,3, B3,1 and B3,3, and (a, g)(b, f) appears
in B1,1, B1,3, B2,2, and B3,2. Thus B is a 5-fold basis.

The proof of the following corollary follows by the same lines as of the proof of
Theorem 2.2 and by taking P

(2)
3 and P

(3)
3 from S(T1) and Q

(1)
3 and Q

(2)
3 from S(T2).

Corollary 2.2 Let S(T1) and S(T2) be two path-sequences of T1 and T2, such that
each edge of T1 and T2 appears in at most two paths of S(T1) and S(T2), respectively.
Then b(T1 ∧ T2) ≤ 4.

We remark that by specializing the trees in the above corollary into stars we get
the following result:

Corollary 2.3 (Al-Rhayyel and Jaradat) For any pair of stars S and S∗, b(S ∧
S∗) ≤ 4.

Similarly, the proof of the next two results follows by taking S(P ) as in Example
2.1 and employing the same argument as in the proof of Theorem 2.1.

Corollary 2.4 For every tree T and path P , we have b(T ∧ P ) ≤ 3.

Corollary 2.5 Let T be a tree and S(T ) be a path sequence of T as in Proposition
2.1 such that each edge of T appears in at most two paths of S(T ). Then b(T∧P ) ≤ 2.

The following result shows that the upper bound in Corollary 2.1 is optimal.

Proposition 2.2 Let T be the 3-special star of order 7 as in Example 2.3 and P be
a path of order 5. Then b(T ∧ P ) = 3.

Proof. In order to prove this proposition it is enough to show that T ∧P is non-
planar. Consider the subgraph H whose vertex set A∪B ∪{(u2, v4)(u5, v3), (u3, v4),
(u6, v2), (u4, v4), (u7, v3)} where A = {(u1, v1), (u1, v3), (u1, v5)} and B = {(u2, v2),
(u3, v2), (u4, v2)} and whose edge set consists of the following nine paths: P1 =
(u1, v1)(u2, v2), P2 = (u1, v1)(u3, v2), P3 = (u1, v1)(u4, v2), P4 = (u1, v3)(u2, v2),
P5 = (u1, v3)(u3, v2), P6 = (u1, v3)(u4, v2), P7 = (u1, v5)(u2, v4)(u5, v3)(u2, v2), P8 =
(u1, v5)(u3, v4)(u6, v2)(u3, v2), P9 = (u1, v5)(u4, v4)(u7, v3)(u4, v2). By noting that
each of A and B are independent sets of edges, it is an easy matter to see that H is
homeomorphic to K3,3. Thus, by Kuratowski’s theorem, T ∧ P5 is non planar.

3 Classification

In this section, we classify trees with respect to the basis number of T ∧ P where
|V (P )| ≥ 5.

Theorem 3.1 Let T be a tree of order at least 3. Then there is a path-sequence
S(T ) satisfying Proposition 2.1 such that each edge appears in at most two paths of
S(T ) if and only if T has no subgraph isomorphic to a 3-special star of order 7.
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Proof. If T has no subgraph isomorphic to a 3-special star of order 7, then either
T is a path, in which case we can take S(T ) as in Example 2.1, or T is a path
P = v1v2 . . . vn in which vi is adjacent to a set of end points, say {vi1 , vi2 . . . viri

},
where 1 ≤ i ≤ n . To this end, we take

S(T ) = {P (1)
3 = v11v1v12 , P

(2)
3 = v12v1v13 , P

(3)
3 = v13v1v14 . . . P

(r1)
3 =

v1r1
v1v2, P

(r1+1)
3 = v1v2v21P

(r1+2)
3 = v21v2v22 . . . , P

(r1+r2+1)
3 =

v2r2
v2v3, . . . , P

(r1+r2+r3+r4+···+rn+n−2)
3 = vnrn−1vnvnrn

}.
Note that r1 + r2 + r3 + r4 + · · · + rn−1 + rn + n − 2 = |E(T )| − 1. The other

direction is an easy consequence of Corollary 2.5 and Proposition 2.2.

Proposition 3.1 Let G be a graph. Then b(G) = 0 if and only if G has no cycle.

Proof. G has at least one cycle if and only if dim C(G) ≥ 1. And dim C(G) ≥ 1 if
and only if b(G) ≥ 1.

The following result is an immediate consequence of the above Proposition 3.1
and Lemma 2.5.

Corollary 3.1 For any tree T and path P , we have b(T ∧ P ) = 0 if and only if at
least one of |V (T )| and |V (P )| is less than or equal to 2.

Proposition 3.2 Let G be any graph. Then b(G) = 1 if and only if dim C(G) ≥ 1
and C(G) is generated from edge-disjoint cycles.

Proof. If C(G) is generated from edge-disjoint cycles, then G is planar. By Euler’s
Theorem we have:

The number of faces = |E(G)| − |V (G)| + 2 = dim C(G) + 1.

Thus, dim C(G) = the number of bounded faces. Therefore, choose B to be the set
of all bounded faces. Hence B is 1-fold. Now, to prove the other direction, assume
B is a 1-fold basis. Then the cycles of B are edge-disjoint. Hence C(G) is generated
from edge-disjoint cycles.

Corollary 3.2 For every tree T and path P , we have that b(T ∧ P ) = 1 if and only
if T is a path and at least one of |V (T )|and |V (P )| is of order 3 and the other is of
order greater than or equal 3.

Proof. If T is a path and at least one of |V (T )|and |V (P )| is of order 3, then we have
a direct product of two paths, one of which is of order 3. Thus, by taking B = B1

as in the proof of Lemma 2.1, we have the result. To prove the other direction we
assume the contrary. Thus, we need to consider two cases:
Case a. T is not a path. Then |V (T )| ≥ 4. Now, if |V (P )| ≤ 2, then b(T ∧ P ) = 0.
If |V (P )| ≥ 3, then there is at least one edge of T ∧ P belonging to at least two
cycles. Thus b(T ∧ P ) �= 1.
Case b. T is a path. Then the orders of P and T are less than or equal to 2. Hence
b(T ∧ P ) = 0.
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Lemma 3.1 Let T and P be a tree and a path, respectively, such that |V (T )| ≥ 4
and |V (P )| ≥ 5. Then b(T ∧ P ) = 2 if and only if there is S(T ) as in Proposition
2.1 and each edge appears in at most two paths of S(T ).

Proof. The proof of the ‘only if’ direction follows from Corollary 2.5, Corollary 3.1
and Corollary 3.2. The ‘if’ direction follows from Proposition 2.2 and Theorem 3.4.

Corollary 3.3 (Ali) For any pair of paths P and P ∗, b( P ∧ P ∗) ≤ 2.

Corollary 3.4 For every tree T and a path P of order at least 5, we have b(T ∧P ) =
3 if and only if for each S(T ) as in Proposition 2.1, there is at least one edge appearing
in at least three paths of S(T ).

From the above results we give the following theorem which classifies trees with
respect to b(T ∧ P ) where |V (P )| ≥ 5.

Theorem 3.2 Let T be a tree. Then (1) b(T ∧P ) = 0 if and only if |V (T )| ≤ 2. (2)
b(T ∧ P ) = 1 if and only if |V (T )| = 3. (3) b(T ∧ P ) = 2 if and only if |V (T )| ≥ 4
and T has no subgraph isomorphic to a 3-special star of order 7. (4) b(T ∧P ) = 3 if
and only if T has a subgraph isomorphic to a 3-special star of order 7.

The following theorem provides us with necessary and sufficient conditions for
T1 ∧ T2 to be non-planar.

Theorem 3.3 For any two trees T1 and T2 such that |V (T2)|, |V (T2)| ≥ 5, we have
that T1 ∧ T2 is non-planer (b(T1 ∧ T2) > 2) if and only if one of the following holds:
(i) ∆(T1) ≥ 3 and ∆(T2) ≥ 3. (ii) One of them is a path and the other contains a
subgraph isomorphic to a 3-special star of order 7.

Proof. Assume neither (i) nor (ii) holds. Then, either ∆(T1) ≤ 2 and ∆(T2) ≤ 2,
and so by Corollary 2.5, b(T1 ∧ T2) ≤ 2, which is a contradiction, or one of ∆(T1)
and ∆(T2) is less than or equal to 2, say ∆(T1), and the other greater than or equal
to 3. Thus T1 is a path and T2 contains no subgraph isomorphic to a 3-special star
of order 7. Therefore, by Theorem 3.1 and Corollary 2.5, we get a contradiction. On
the other hand, if one of (i) and (ii) holds, then by Lemma 1.1 and Theorem 3.2, we
get the result.

4 The Upper Bound of the Basis Number of the

Direct Product of Two Bipartite Graphs

In this section, we give an upper bound of the basis number of the direct product of
two bipartite graphs in terms of their basis numbers.
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Remark 4.1 Let G be a connected graph and B =
{
c1, c1, ..., cdim C(G)

}
be a basis of

C(G). If T is a spanning tree obtained by deleting tG =
{
e1, e2,..., edim C(G)

}
∈ E(G),

then: (i) If c =
∑α

j=1 cij mod 2, then c contains at least one edge of tG. (ii) For each
ci, cj ∈ B, there exists at least one edge in tG, say, ei0 in either ci or cj, but not in
both.

Theorem 4.1 For every two bipartite graphs G and H, b(G∧H) ≤ b(G)+b(H)+5.

Proof. Let T and T ∗ be spanning trees of G and H. Let B∗ be the basis of C(T∧T ∗)
as in Theorem 2.1. Let BG and BH be the required basis of G and H, respectively,
Note that G∧ T ∗ is decomposed into 2(|V (T ∗)| − 1) edge-disjoint copies of G. Now,

define BGe = B(1)
Ge ∪ B(2)

Ge , where B(1)
Ge and B(2)

Ge are the corresponding required basis
of BG in the two components of G ∧ e, where e ∈ E(T ∗). Let B∗∗ =

⋃
e∈T ∗ BGe.

Since each of B(1)
Ge and B(2)

Ge is linearly independent and they are vertex-disjoint,
BGe is linearly independent. Since BGe and BGe′ are edge-disjoint for each e �= e

′
,

B∗∗ is linearly independent. Define BHe = B(1)
He ∪ B(2)

He, where B(1)
He and B(2)

He are
the corresponding required basis of BH in the two components of e ∧ H, where
e ∈ E(G). Let B∗∗∗ =

⋃
e∈E(G) BHe. By the same argument as above, we have

that B∗∗∗ is linearly independent. Set B = B∗ ⋃B∗∗ ⋃B∗∗∗. Assume that
∑γ

i=1 ci +∑
e∈A⊂E(G)

∑δe
i=1 dei

= 0 (mod 2) where ci ∈ B∗ and dei
∈ BGe. Then

∑γ
i=1 ci +∑

e∈A−e
′
∑δe

i=1 dei
=

∑δ
e
′

i=1 de
′
i
(mod 2) where A − e

′
= {e1, e2, . . . , en}. Thus, E(c1 ⊕

c2 ⊕ . . .⊕ cγ ⊕ de11 ⊕ de12 ⊕ . . .⊕ de1δe1
⊕ de21 ⊕ . . . denδen

) = E(de
′
1
⊕ de

′
2
⊕ . . .⊕ de

′
δ
e
′
)

where the ring sum c1 ⊕ c2 ⊕ . . .⊕ cγ ⊕ de11 ⊕ de12 ⊕ . . .⊕ de1δe1
⊕ de21 ⊕ . . . denδen

and
de

′
1
⊕ de

′
2
⊕ . . .⊕ de

′
δ
e
′

are cycles or edge-disjoint cycles. By Remark 4.1 we have that

E(de
′
1
⊕de

′
2
⊕ . . .⊕de

′
δ
e
′
) contains at least one edge which is not in E(c1⊕c2⊕ . . .⊕cγ),

and since {BGe}e∈T ∗ are pairwise edge-disjoint, it is not in E(de11⊕de12⊕. . .⊕de1δe1
⊕

de21 ⊕ . . . denδen
). Thus, B∗ ∪ B∗∗ is linearly independent. By the same argument as

above we can show that B is linearly independent. Now,

|B| = |B∗| + |B∗∗| + |B∗∗∗|
= 2|V (T ∗)||E(T )| − |V (T ∗)||V (T )| + 2 +

∑
|E(T ∗)|

|BGe| +
∑

|E(G)|
|BHe|

= 2|V (T ∗)||E(T )| − |V (H)||V (G)| + 2|E(T ∗)|dim C(G) + 2|E(G)|dim C(H)

= 2|V (T ∗)|(|E(T )| + dim C(G)) + 2|E(G)|dim C(H) − |V (G)||V (P )| + 2

= 2|V (T ∗)||E(G)| + 2|E(G)|dim C(H) − |V (G)||V (P )| + 2

= 2|E(G)|(|V (T ∗)| + dim C(H)) − |V (G)||V (P )| + 2

= 2|E(G)||E(H)| − |V (G)||V (P )| + 2 = dim C(G ∧ H).

Therefore, B is a basis of C(G ∧ H). To this end, we need to show that B is a
(5 + b(H) + b(G))) - fold basis. Let e ∈ B. Then (i) If e ∈ E(G ∧ H) − E(T ∧ T ∗),
then fB∗ = 0, fB∗∗ ≤ b(G), and fB∗∗∗(e) ≤ b(H).
(ii) If e ∈ E(T∧T ∗), then fB∗(e) ≤ 5, fB∗∗(e) ≤ b(G) and fB∗∗∗(e) ≤ b(H). Therefore,
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we have the result.

The following corollaries are straightforward consequences from the proof of the
previous results.

Corollary 4.1 Let H and G be two bipartite graphs. If there exist two spanning
trees T and T ∗ for H and G, respectively, and S(T ) and S(T ∗) as in Proposition 2.1
such that each edge of T and T ∗ appears in at most two paths of S(T ) and S(T ∗),
respectively, then b(G ∧ H) ≤ 4 + b(G) + b(H).

Corollary 4.2 For every path P and bipartite graph G, b(G∧P ) ≤ 3+ b(G). More-
over, if there is a spanning tree T of G and S(T ) as in Proposition 2.1 such that
each edge of T appears in at most two paths, then b(G ∧ P ) ≤ 2 + b(G).

By specializing G in the above corollary into a cycle of even order we have the
following result.

Corollary 4.3 (Ali) If C and C∗ are even cycles and P is a path, then b(C∧P ) ≤ 2
and b(C ∧ C∗) ≤ 3.

5 The Basis Number of the Direct Product of a

Bipartite Graph and a Cycle

In this section, we investigate the upper bound of the basis number of the direct
product of a bipartite graph with a cycle.

Theorem 5.1 For any tree T and cycle C, we have b(T ∧ C) ≤ 3. Moreover, the
equality holds if T contains a subgraph isomorphic to a 3-special star of order 7.

Proof. Let S(T ) = {P (1)
3 = a1b1c1, P

(2)
3 = a2b2c2, . . . , P

(|V (T )|−2)
3 = a|V (T )|−2 b|V (T )|−2

c|V (T )|−2} be a path sequence as in Proposition 2.1 and C = u1u2 . . . u|V (C)|u1. For
each i = 1, 2, . . . , |V (T )| − 2, set

Bi = {(bi, uj)(ci, uj+1)(bi, uj+2)(ai, uj+1)(bi, uj)|j = 1, 2, . . . , |V (C)| − 2}
∪{(bi, u|V (C)|)(ci, u1)(bi, u2)(ai, u1)(bi, u|V (C)|)}

∪{(bi, u1)(ci, u|V (C)|)(bi, u|V (C)|−1)(ai, u|V (C)|)(bi, u1)}.
It is an easy matter to see that Bi is linearly independent and is 1-fold. Let
B′

=
⋃|V (T )|−2

i=1 Bi. By induction on |V (T )|, we get that
⋃|V (T )|−3

i=1 Bi is linearly in-

dependent. Since P
(|V (T )|−2)
3 contains an edge, say a|V (T )|−2b|V (T )|−2, which is not in

any other path of S(T ), each cycle of B|V (T )|−2 contains at least one edge of the form
(a|V (T )|−2, uj)(b|V (T )|−2, uj+1) and (a|V (T )|−2, uj+1)(b|V (T )|−2, uj) which are not in any

cycle of
⋃|V (T )|−3

i=1 Bi. Thus, B′
is linearly independent. To this end, we have essen-

tially two cases to consider:
Case a. |V (C)| is odd. Then T ∧ C is connected. Let
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R = (a|V (T )|−2, v1)(b|V (T )|−2, v2)(a|V (T )|−2, v3) . . . (a|V (T )|−2, v|V (C)|)
(b|V (T )|−2, v1)(a|V (T )|−2, v2) . . . (b|V (T )|−2, v|V (C)|)(a|V (T )|−2, v1)

and
B = B′ ∪ {R} .

We now prove that R is independent from the cycles of B. Let Ee = E(e ∧ C).
Then it is easy to verify that {Ee}e∈E(T ) is a partition of E(T ∧ C). Moreover,
Ea|V (T )|−2b|V (T )|−2

= E(R) and Ea|V (T )|−2b|V (T )|−2
∪ Eb|V (T )|−2c|V (T )|−2

= E(B|V (T )|−2).

Thus, if R is a sum modulo 2 of some cycles of B′
, say {k1, k2, . . . , kr}, then B|V (T )|−2

⊂ {k1, k2, . . . , kr}. Since Eb|V (T )|−2c|V (T )|−2
⊂ E(B|V (T )|−2), there is an i0 and a non-

empty set Bi0 ⊂ Bi0 such that P
(i0)
3 ∈ S(T ), Bi0 ⊂ {k1, k2, . . . , kr} and either

b|V (T )|−2c|V (T )|−2 = ai0bi0 or bi0ci0 . Suppose ai0b|V (T )|−2c|V (T )|−2 = P
(i0)
3 ∈ S(T ).

Since E(Bi0) ⊂ Eai0
b|V (T )|−2

∪ Eb|V (T )|−2c|V (T )|−2
= E(Bi0), there is i1 and a non-

empty set Bi1 ⊂ Bi1 such that P
(i1)
3 ∈ S(T ), Bi1 ⊂ {k1, k2, . . . , kr} and either

ai0bi0 = ai1bi1 or bi1ci1 and so on, it implies that there is an integer it and a non-

empty set Bit ⊂ Bit such that P
(it)
3 ∈ S(T ), one of its edges appears only in P

(it)
3 , say

aitbit , b|V (T )|−2c|V (T )|−2 ∈ P
(it)
3 ( if not, then T has a cycle) and Bit ⊂ {k1, k2, . . . , kr}.

Therefore, E(Bit) ∩Eaitbit
⊆ E(R) which is a contradiction. So B is linearly inde-

pendent.
Case b. |V (C)| is even. Then T ∧C consists of two isomorphic components H1 and
H2. Take

f1 = (a|V (T )|−2, v1)(b|V (T )|−2, v2)(a|V (T )|−2, v3) . . . (a|V (T )|−2, v|V (C)|−1)
(b|V (T )|−2, v|V (C)|)(a|V (T )|−2, v1) and

f2 = (b|V (T )|−2, v1)(a|V (T )|−2, v2)(b|V (T )|−2, v3) . . . (b|V (T )|−2, v|V (C)|−1)
(a|V (T )|−2, v|V (C)|)(b|V (T )|−2, v1).

Now, let B
(l)
i be the set of cycles of Bi which are cycles in Hl for l = 1, 2. Note

that one of f1 and f2 is a cycle of H1, say f1, and the other of H2. By employing the
same argument as in Case a to each component, we obtain that each of B(1) ∪ {f1}
and B(2) ∪{f2} is an independent set. Hence B = B(1)∪B(2) ∪{f1}∪{f2} is linearly
independent. Now,

|B| =
|V (T )|−2∑

i=1

|Bi| + δ

= (|V (T )| − 2)(|V (C)|) + δ = dim C(T ∧ C).

where

δ =

{
1, if |V (C)| is odd ,
2, if |V (C)| is even.

Thus, B is a basis of T ∧ C and it is easy to see that it is 3-fold.

By taking B = B∗ ∪ B∗∗ where B∗ = B as in Theorem 5.1 and B∗∗ = ∪e∈E(C)BGe

as in Theorem 4.1, and following their proofs, we get the following result:
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Corollary 5.1 For every bipartite graph G and a cycle C, we have b(G ∧ C) ≤
b(G) + 3.

Corollary 5.2 If G has a spanning tree T such that has no subgraph isomorphic to
a 3-special star of order 7, then b(G ∧ C) ≤ b(G) + 2.

Proof. It follows from the proof of Corollary 5.1 and the fact that each edge of T
appears in at most 2 paths of S(T ).

By specializing the bipartite graph G in the above corollary into an even cycle,
we obtain the following result:

Corollary 5.3 (Ali) If C∗ is an even cycle and C is a cycle, then b(C∗ ∧ C) ≤ 3.
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