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Abstract

The upper chromatic number χ(H) of a hypergraph H is the maximum
number of colors in a coloring avoiding a polychromatic edge. The sta-
bility number α(H) of a hypergraph H is the cardinality of the largest
set of vertices of H which does not contain an edge. A hypergraph is
k-uniform if the sizes of all its edges are k. A hypergraph H is co-perfect
if χ(H ′) = α(H ′) for each induced subhypergraph H ′ of H.

Voloshin conjectured that an r-uniform hypergraph H (r ≥ 3) is
co-perfect if and only if it contains neither of two special r-uniform hy-
pergraphs (a so-called monostar and a complete circular r-uniform hy-
pergraph on 2r − 1 vertices) as an induced subhypergraph. We disprove
this conjecture for all r.

1 Introduction

A hypergraph H is a pair (V, E) where V is its vertex set and E ⊆ 2V is its edge set;
we do not restrict the sizes of the edges to two as in the case of graphs. Throughout
the paper we write V (H) for a vertex set of a hypergraph H and E(H) for its edge set.
Recently, the topic of coloring of vertices of hypergraphs avoiding a polychromatic
edge (i.e., an edge whose vertices have mutually different colors) has drawn the
attention of different researchers, cf. [4, 6, 10, 15, 16], and related extremal (anti-
Ramsey) questions were studied in [1, 3, 7, 17]. In this case, we want to color a
hypergraph with a maximum possible number of colors (coloring all the vertices
with the same color is clearly good and thus minimizing the number of colors is not

∗ Institute for Theoretical Computer Science is supported by the Ministry of Education of Czech
Republic as project LN00A056.

Australasian Journal of Combinatorics 27(2003), pp.253–261



interesting); the maximum possible number χ(H) of colors such that the vertices of
the hypergraph H can be colored avoiding a polychromatic edge is called the upper
chromatic number of H. Besides studying this type of coloring, the researchers also
study so-called mixed hypergraphs where the coloring has to prevent some of the edges
being monochromatic and some of them being polychromatic, cf. [5, 9, 11, 12, 13]
and a recent monograph on the subject [18].

In this paper we study the coloring of hypergraphs which avoids a polychromatic
edge as described in the previous paragraph. The stability number α(H) of a hyper-
graph H is the cardinality of the largest set A such that no edge of H is contained
in A; such a set A is called stable. If c is a coloring of the vertices of H, then a color
class with respect to c is a set of the vertices of H colored with the same color. It is
clear that α(H) ≥ χ(H), since we can create a stable set by taking one vertex from
each color class of a coloring using χ(H) colors (and this is actually a stable set,
since the coloring avoids a polychromatic edge). A natural question is: “For which
hypergraphs H does it hold that α(H) = χ(H)?” A conjecture on this problem with
the strong perfect graph conjecture favor was made in [19]: They conjectured that
α(H ′) = χ(H ′) for all induced subhypergraphs H ′ of H if and only if H contains
neither of two special types of hypergraphs as an induced subhypergraph.

A hypergraph H is r-uniform if the size of all its edges is r; a hypergraph H is
r-regular if each of its vertices is contained in precisely r edges of H. A subhypergraph
H ′ of a hypergraph H is a hypergraph whose vertex and edge sets are respectively
subsets of the vertex set and the edge set of H; a subhypergraph H ′ is induced if
E(H ′) = E(H) ∩ 2V (H′), i.e., all the edges of H all of whose vertices are in V (H ′)
are also the edges of H ′. A famous strong perfect graph conjecture asserts that
α(G′) = χ(G′) for each induced subgraph G′ of G (such graphs are called perfect) if
and only if neither G nor its complement contains an odd cycle on 5 or more vertices
as an induced subgraph. Voloshin, inspired by this famous conjecture, made a similar
conjecture in [19]:

Conjecture 1 [19] For each r ≥ 3, an r-uniform hypergraph H is co-perfect if and
only if it contains neither a monostar nor a Cr

2r−1 as an induced subhypergraph.

We postpone the missing definitions to the next paragraph. The co-perfectness of
hypergraphs has been introduced in [19]; Conjecture 1 can be found as Conjecture 1
in [19]; the other conjecture stated in [19], Conjecture 2 of [19] on spectra of mixed
hypergraphs, has been recently answered in the affirmative by the author in [9]. Other
problems posed in [19] have been considered in [2, 8, 14] (Problem 8 of [19] on mixed
hypergraphs derived from planar hypergraphs), in [9] (Problem 10 and Problem 11 of
[19] about spectra of mixed hypergraph and some related extremal questions), in [12]
(Problem 13 of [19] regarding an edge version of mixed hypergraphs) and in [11, 13]
(Problem 14 of [19] about mixed hypergraphs with a restricted edge structure).

A hypergraph H is co-perfect if for each of its induced subhypergraph H ′ it holds
that α(H ′) = χ(H ′). A monostar is a hypergraph H such that the cardinality of the
intersection of all the edges of H is exactly one, i.e., there exists a vertex v which
is contained in all the edges and v is a unique vertex with this property; we call
such a vertex the center vertex of a monostar. It is clear that α(H) = n − 1 for a
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monostar H on n vertices and χ(H) < n − 1; hence monostars are certainly not co-
perfect. A hypergraph H is circular if there exists a cycle (in the usual graph theory
sense) on the vertices of H such that the edges of H form its paths; we write Cr

n

for an r-uniform hypergraph whose edges are precisely all the paths consisting of r
vertices of the n-vertex cycle, i.e., Cr

n is the maximum r-uniform circular hypergraph
on n vertices. The hypergraph Cr

n for n ≥ 2r contains a monostar as an induced
subhypergraph and thus it is not co-perfect; but also Cr

2r−1 is not co-perfect, since
α(Cr

2r−1) = 2r − 3 and χ(Cr
2r−1) < 2r − 3 (cf. [19]). These two examples of non-co-

perfect hypergraphs led to Conjecture 1 which is similar to the strong perfect graph
conjecture, but besides this similarity there is no other connection between these
two conjectures. Conjecture 1 has attracted attention of researchers: Tuza discussed
Conjecture 1 during his invited talk on mixed hypergraphs at the Workshop, Cycles
and Colorings 2001, in Stara Lesna, Slovakia. There is also a special chapter devoted
to the concept of co-perfectness and to this conjecture in a recent monograph [18].
We provide a counter-example to this conjecture for any r ≥ 3.

Conjecture 1 is clearly equivalent to the following conjecture:

Conjecture 2 If an r-uniform hypergraph H (r ≥ 3) contains neither a monostar
nor Cr

2r−1 as an induced subhypergraph, then α(H) = χ(H).

Due to Conjecture 2, in order to disprove Conjecture 1, it is enough to find an r-
uniform hypergraph H (for each r ≥ 3) which contains neither a monostar nor Cr

2r−1

as an induced subhypergraph and for which χ(H) < α(H). We prove the existence
of such hypergraphs in Theorem 1 in Section 2.

1.1 Definitions and Notation

Let H be a hypergraph. We write H \ V0 where V0 ⊆ V (H) for the induced subhy-
pergraph of H on the vertex set V (H) \ V0. Let c be a coloring of the vertices of H.
If H contains no polychromatic edge, we say that the coloring c is good. A color of
a vertex v is unique if v is the only vertex colored with this color. An isomorphism
between two hypergraphs H1 and H2 is a one-to-one mapping ϕ : V (H1) → V (H2)
such that the images of the edges of H1 are precisely the edges of H2. An isomor-
phism is an automorphism if H1 = H2; an automorphism is non-trivial if it is not
the identity. A hypergraph H is vertex-transitive if for any two vertices v and w of
H there is an automorphism ϕ of H such that ϕ(v) = w.

The incidence matrix of a hypergraph H with V (H) = {v1, . . . , vn} and E(H) =
{e1, . . . , em} is n × m matrix I(H) such that I(H)ij = 1 if vi ∈ ej and I(H)ij = 0
otherwise. Note that if H is r-uniform, then each column sum is precisely r; if
H is k-regular, then each row sum is precisely k. We deal with different uniform
hypergraphs in the paper: We use the notation such that the superscript is equal to
the common sizes of edges, e.g., Cr

n (defined earlier) is an r-uniform hypergraph.

2 The Counter-Example

We first define the counter-example (to Conjecture 2) r-uniform hypergraph Hr:
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Definition 1 Let r ≥ 3 be a fixed integer. Let Hr be the r-uniform hypergraph with
2r vertices and 2r + 2 edges whose incidence matrix 2r × (2r + 2) is the following
(the incidence matrices for r = 3 and r = 4 can be found below):

I(Hr) =




1 0 0
. . .

. . .
. . .

. . .
. . .

. . . 1 0 1 1 0

1 1 0
. . .

. . .
. . .

. . .
. . .

. . . 0 1 0 0 1

0 1 1
. . .

. . .
. . .

. . .
. . .

. . . 1 0 1 1 0

1 0 1
. . .

. . .
. . .

. . .
. . .

. . . 0 1 0 0 1

0 1 0
. . .

. . .
. . .

. . .
. . .

. . . 1 0 1 1 0

1 0 1
. . .

. . .
. . .

. . .
. . .

. . . 0 1 0 0 1
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

...

0 1 0
. . .

. . .
. . .

. . .
. . .

. . . 0 0 1 1 0

1 0 1
. . .

. . .
. . .

. . .
. . .

. . . 1 0 0 0 1

0 1 0
. . .

. . .
. . .

. . .
. . .

. . . 1 1 0 1 0

0 0 1
. . .

. . .
. . .

. . .
. . .

. . . 0 1 1 0 1




We write v1, . . . , v2r for the vertices of Hr; the vertex vi corresponds to the i-th row
of the incidence matrix. We write e1, . . . , e2r for the edges corresponding to the first
2r columns of the incidence matrix:

ei = {vi} ∪ {vi+1, vi+3, . . . , vi+2r−3}

where the subscripts of the vertices are taken modulo 2r. We write eo and ee (odd
and even, corresponding to the parity of the indices of the subscripts of the vertices
contained in eo and ee) for the edges corresponding to the last but one and the last
column of the incidence matrix.

In order to illustrate the definition, we include the incidence matrices for H3 and
H4:

I(H3) =




1 0 0 1 0 1 1 0
1 1 0 0 1 0 0 1
0 1 1 0 0 1 1 0
1 0 1 1 0 0 0 1
0 1 0 1 1 0 1 0
0 0 1 0 1 1 0 1



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I(H4) =




1 0 0 1 0 1 0 1 1 0
1 1 0 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1 1 0
1 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 1 0
1 0 1 0 1 1 0 0 0 1
0 1 0 1 0 1 1 0 1 0
0 0 1 0 1 0 1 1 0 1




The main theorem of this section will be the following:

Theorem 1 The r-uniform hypergraph Hr for any r ≥ 3 contains neither a monos-
tar nor the complete circular hypergraph Cr

2r−1 on 2r−1 vertices, but χ(Hr) < α(Hr).

First, we make a simple observation on the structure of Hr:

Lemma 1 The hypergraph Hr is a vertex-transitive r-uniform (r+1)-regular hyper-
graph.

Proof: The proof of the uniformity and the regularity of Hr follows immediately
from Definition 1. In order to prove the vertex-transitivity of Hr, note that the
function ϕ : V (Hr) → V (Hr) defined as follows is an automorphism of Hr:

ϕ(vi) =

{
v1 if i = 2r,
vi+1 otherwise.

We next find the stability number of Hr:

Lemma 2 The stability number of Hr is 2r − 3.

Proof: The set of vertices of Hr, {v1, . . . , v2r−3}, is stable; thus α(Hr) ≥ 2r − 3.
Let A ⊆ V (Hr) be a stable set of size 2r − 2. We can assume that v1 �∈ A because
Hr is vertex-transitive. Let vi be the only vertex different from v1 not contained in
A. If i is odd, then ee ⊆ A. Hence i has to be even. If i = 2, then e3 ⊆ A; but if
i ≥ 4, then e2 ⊆ A. Hence A is not stable.

We next prove that the upper chromatic number of Hr is smaller than its stability
number:

Lemma 3 The upper chromatic number of Hr is 2r − 4.
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Proof: Let c be the following coloring of Hr:

c(vi) =

{
i for 1 ≤ i ≤ 2r − 5,
2r − 4 for 2r − 4 ≤ i ≤ 2r.

The coloring c is a good coloring of Hr and thus χ(Hr) ≥ 2r − 4. In the rest, we
prove that χ(Hr) ≤ 2r − 4. Let c be a coloring of Hr using 2r − 3 colors. We
distinguish several cases to prove that this coloring is not good:

• There are four vertices sharing the same color (the sizes of the color classes are
4 : 1 : 1 : . . . : 1 in this case).
Let A be the set of the four vertices colored with the same color. It has to be
that |A ∩ eo| = 2 and |A ∩ ee| = 2 because eo and ee are disjoint. We may
assume without loss of generality that v1 ∈ A. Consider the edge e2: There is
only one vertex among the vertices v3, v5, . . . , v2r−1 from the set A (there are
exactly two vertices with an odd index in A and one of them is v1). Then v2

must be in A. In a similar way, one may conclude that v3 ∈ A, v4 ∈ A and
v5 ∈ A. This contradicts |A| = 4.

• There are exactly three vertices sharing the same color (the sizes of the color
classes are 3 : 2 : 1 : 1 : . . . : 1).
Let A be the set of the three vertices sharing the same color and B the set of
the two vertices; set S = A ∪ B. We may assume without loss of generality
that |S∩eo| = 2 and |S∩ee| = 3. Let {vi, vj} = S∩eo. Consider the edge ei+1:
It has to be that |S ∩ ei+1| ≥ 2 and this is possible only if vi+1 ∈ S; actually,
the vertices vj and vi+1 must have the same color. Similarly, vj+1 ∈ S and the
vertices vi and vj+1 have the same color. But then there are four vertices of
the same color which is impossible.

• There are no three vertices sharing the same color (the sizes of the color classes
are 2 : 2 : 2 : 1 : 1 : . . . : 1).
Let A, B and C be the three pairs of the vertices colored with the same color.
We may assume without loss of generality that A ⊆ eo and B ⊆ ee. Consider a
vertex vi ∈ A. Since the edge ei+1 does not contain vi and its intersections with
both A and B have sizes at most one, it has to be that C ⊆ ei+1. Similarly
C ⊆ ej+1 for the other vertex vj ∈ A and C ⊆ ek+1 and C ⊆ el+1 for the two
vertices vk and vl from B (indices are taken modulo 2r if necessary). Then
C ⊆ ei+1 ∩ ej+1 ⊆ eo and C ⊆ ek+1 ∩ el+1 ⊆ ee which is impossible because eo

and ee are disjoint.

It remains to check that Hr contains neither a monostar nor Cr
2r−1 as an induced

subhypergraph:

Lemma 4 The hypergraph Hr does not contain a monostar as an induced subhyper-
graph.
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Proof: Let r ≥ 3 be a fixed integer throughout the proof. We assume that Hr

contains a monostar with the center vertex equal to v1. Let V0 ⊆ V (Hr) be the
vertices which induce the monostar and let E0 = E(Hr)∩2V0 . Note that the following
hold, due to the definition of a monostar and an induced subhypergraph:

V0 =
⋃

e∈E0

e

∀e′ ∈ E(H) : e′ ⊆ V0 ⇒ e′ ∈ E0

{v1} =
⋂

e∈E0

e =
⋂

e⊆V0,e∈E(H′)
e

We distinguish several cases in the proof:

• e1 ∈ E0 and eo ∈ E0

It has to be that V0 ⊇ eo ∪ e1 = V (Hr) \ {v2r}. But then e2 ∈ E0 — contradic-
tion.

• e1 ∈ E0 and eo �∈ E0

The edge e1 cannot be the only edge of E0. Since the intersection of the edges of
E0 is {v1}, E0 can contain, besides e1, only the edges ei for even i, 4 ≤ i ≤ 2r. If
e2r ∈ E0, then e1∪e2r = V (Hr)\{v2r−1} ⊇ V0 and ee ∈ E0 which is impossible.
Let ei1 be an edge of E0 different from e1; i1 has to be an even integer between
4 and 2r − 2. Since e1 ∩ ei1 = {v1, vi1}, the edge set E0 has to contain an edge
ei2 different from e1 and ei1 . But then e1 ∪ ei1 ∪ ei2 = V (Hr) \ {v2r} ⊇ V0.
Hence e2 ∈ E0 — contradiction.

• e1 �∈ E0 and eo ∈ E0

The only two edges of E0 which contain v1 and do not contain vi for odd
3 ≤ i ≤ 2r − 1 are e1 and ei+1. Since e1 �∈ E0, the intersection of the edges of
E0 consists of the single vertex v1 and vi ∈ eo for all odd i, 3 ≤ i ≤ 2r − 1, it
follows that ei+1 ∈ E0. But then V0 ⊇ V (Hr)\{v2}, and e3 has to be contained
in E0 — contradiction.

• e1 �∈ E0 and eo �∈ E0

In this case it has to be that E0 ⊆ {e4, e6, . . . , e2r}. The only edge of e4, e6,
. . ., e2r which does not contain vi for odd i, 3 ≤ i ≤ 2r − 1 is ei+1. Hence, it
has to be that E0 = {e4, . . . , e2r}. But then V0 ⊇ V (Hr) \ {v2}, and thus e3

has to be contained in E0 — contradiction.

Lemma 5 The hypergraph Hr does not contain the complete circular hypergraph
Cr

2r−1 on 2r − 1 vertices as an induced subhypergraph.
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Proof: Let r ≥ 3 be a fixed integer throughout the proof. If Hr contains Cr
2r−1

as an induced subhypergraph, then Hr \ v1 is isomorphic to Cr
2r−1 (recall that Hr is

vertex-transitive). But Hr \ v1 consists of only 2r + 2 − (r + 1) = r + 1 edges and
Cr

2r−1 consists of 2r − 1 edges.

Theorem 1 now immediately follows from Lemma 2, Lemma 3, Lemma 4 and
Lemma 5.

3 Conclusion

Our negative result regarding Voloshin’s co-perfectness graph conjecture is not def-
initely a final result in the area; actually, the opposite could rather be the case. It
remains a challenging problem to find all minimal non-co-perfect hypergraphs differ-
ent from monostars or at least to prove whether their number is finite or not. The
concept of coloring avoiding polychromatic edges is quite a new one and one may
expect lots of surprising results which would show its difference (or its similarities) to
the concept of usual coloring. We finish with the following two problems regarding
co-perfectness of hypergraphs whose answers will be definitely of big interest:

Problem 1 For which (r-uniform) hypergraphs H does the equality α(H) = χ(H)
hold?

Problem 2 For which (r-uniform) hypergraphs H does the equality α(H ′) = χ(H ′)
hold for all induced subhypergraph H ′ of H, i.e., which H are co-perfect?
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