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Abstract

In this paper we present upper bounds on the differences between the
independence, domination and irredundance parameters of a graph. For
example, using the Brooks theorem on the chromatic number, we show
that for any graph G of order n with maximum degree ∆ ≥ 2

IR(G) − β(G) ≤
⌊
∆ − 2

2∆
n

⌋
,

where β(G) and IR(G) are the independence number and the upper
irredundance number of a graph G, respectively. This bound implies a
conjecture posed by Rautenbach (Discrete Math. 203 (1999), 239–252).

1 Introduction

All graphs will be finite and undirected without multiple edges. If G is a graph,
V (G) denotes the set, and |G| the number, of vertices in G. Let N(x) denote
the neighborhood of a vertex x, and let 〈X〉 denote the subgraph of G induced by
X ⊆ V (G). Also let N(X) = ∪x∈XN(x) and N [X ] = N(X) ∪ X.

A set I ⊆ V (G) is called independent if no two vertices of I are adjacent. A
set X is called a dominating set if N [X ] = V (G). An independent dominating
set is a vertex subset that is both independent and dominating, or equivalently, is
maximal independent. The independence number β0(G) is the maximum cardinality
of a (maximal) independent set of G, and the independent domination number i(G)
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is the minimum cardinality taken over all maximal independent sets of G. The
domination number γ(G) is the minimum cardinality of a (minimal) dominating set
of G, and the upper domination number Γ(G) is the maximum cardinality taken over
all minimal dominating sets of G. For x ∈ X , the set

PN(x, X) = N [x] − N [X − {x}]

is called the private neighborhood of x. If PN(x, X) = ∅, then x is said to be
redundant in X . A set X containing no redundant vertex is called irredundant.
The irredundance number ir(G) is the minimum cardinality taken over all maximal
irredundant sets of G, and the upper irredundance number IR(G) is the maximum
cardinality of a (maximal) irredundant set of G.

The following relationship among the parameters under consideration is well-
known [4, 5]:

ir(G) ≤ γ(G) ≤ i(G) ≤ β(G) ≤ Γ(G) ≤ IR(G).

Many authors ([1],[6], [9]–[14]) investigated the differences between the above pa-
rameters for various classes of graphs. In this paper, we present further results on
the differences between those parameters. For example, using the Brooks theorem
on the chromatic number, we show that for any graph G of order n with maximum
degree ∆ ≥ 2,

IR(G) − β(G) ≤
⌊
∆ − 2

2∆
n

⌋
.

This bound implies a conjecture posed by Rautenbach [12]: if G is a graph with
maximum degree ∆ ≤ 3, then

IR(G) − β(G) ≤
⌊
n

6

⌋
.

2 Upper Bounds for the Upper Parameters

The following bounds on the difference IR(G) − β(G) were proved by Rautenbach
[12], who also characterized extremal graphs for the first bound.

Theorem 1 ([12]) For any graph G of order n ≥ 4,

IR(G) − β(G) ≤
⌊
n − 4

2

⌋
.

Theorem 2 ([12]) For any graph G of order n with maximum degree ∆ ≥ 1,

IR(G) − β(G) ≤
⌊
(∆ − 1)2

2∆2
n

⌋
.
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Substituting ∆ = 3 into the above inequality, we obtain the upper bound for
graphs with maximum degree 3:

IR(G) − β(G) ≤
⌊
2

9
n

⌋
.

Rautenbach [12] conjectured that this bound can be improved.

Conjecture 1 ([12]) If G is a graph with maximum degree ∆ ≤ 3, then

IR(G) − β(G) ≤
⌊
n

6

⌋
.

Note here that IR(G) = β(G) for any graph with maximum degree ∆ ≤ 2. Thus,
it is sufficient to prove the conjecture for graphs with maximum degree 3.

We first prove the upper bound for IR(G) − β(G), improving Theorem 2. This
bound immediately implies Conjecture 1.

Theorem 3 For any graph G of order n with maximum degree ∆ ≥ 2,

IR(G) − β(G) ≤
⌊
∆ − 2

2∆
n

⌋
.

Proof: Consider a maximum irredundant set X of G. Let us denote all isolated
vertices of the graph 〈X〉 by X0 and let X∗ = X − X0. Since X has no redundant
vertex, it follows that PN(x, X) 
= ∅ for any x ∈ X . Note that PN(x, X)∩X = ∅ for
any vertex x ∈ X∗. For each vertex x ∈ X∗, take one vertex from the set PN(x, X)
and generate the set Y ∗. Obviously, X∗ ∩ Y ∗ = ∅. Moreover, all edges between
the sets X∗ and Y ∗ form a perfect matching of the graph F = 〈X∗ ∪ Y ∗〉. Denote
|X∗| = t; thus |F | = 2t.

We denote by I a maximum independent set of the graph F . Let us prove that

|I| = β(F ) ≥ 2t

∆
.

We will need Brooks theorem [3]: If H is a connected graph which is not complete
and ∆(H) ≥ 3, then

χ(H) ≤ ∆(H).

Denote by F1, F2, ..., Fm connected components of the graph F . Let us consider
an arbitrary component Fi. Since any vertex x ∈ X∗ is adjacent to x′ ∈ X∗, we see
that

∆(Fi) ≥ 2.
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Suppose that ∆(Fi) = 2. Since F has a perfect matching, it follows that Fi is
isomorphic to either an even cycle or a chain. Hence we obtain

β(Fi) ≥ |Fi|
2

=
|Fi|

∆(Fi)
.

Assume now that ∆(Fi) ≥ 3. Since Fi cannot be isomorphic to a complete graph,
we obtain, by Brooks theorem,

χ(Fi) ≤ ∆(Fi).

Therefore,

β(Fi) ≥ |Fi|
χ(Fi)

≥ |Fi|
∆(Fi)

.

We obtain

β(F ) =
m∑

i=1

β(Fi) ≥
m∑

i=1

|Fi|
∆(Fi)

≥ 1

∆(G)

m∑
i=1

|Fi| =
|F |

∆(G)
=

2t

∆
.

It is not difficult to see that I ∪ X0 is an independent set of G. Hence

β(G) ≥ |I| + |X0|.

Thus,

IR(G) − β(G) ≤ |X∗| + |X0| − |I| − |X0|
= |X∗| − |I| ≤ t − 2t

∆
=

∆ − 2

2∆
2t ≤ ∆ − 2

2∆
n,

as required.

We now prove the upper bound on the difference IR(G) − β(G) as a function of
the chromatic number and order of G. It may be pointed out that Theorem 4 as
well as Theorem 3 imply the same upper bounds for the differences IR(G) − Γ(G)
and Γ(G) − β(G).

Theorem 4 For any graph G of order n with maximum degree ∆ ≥ 1,

IR(G) − β(G) ≤
⌊
χ(G) − 2

2χ(G)
n

⌋
.

Proof: Using the same notation as in the proof of Theorem 3, we obtain

|I| = β(F ) ≥ |F |
χ(F )

≥ 2t

χ(G)
.

178



Therefore,

IR(G) − β(G) ≤ |X∗| + |X0| − |I| − |X0|
= |X∗| − |I| ≤ t − 2t

χ(G)
=

χ(G) − 2

2χ(G)
2t ≤ χ(G) − 2

2χ(G)
n,

as required.

Theorem 4 immediately implies the following well-known result on bipartite
graphs.

Corollary 1 ([4]) If G is a bipartite graph, then

β(G) = Γ(G) = IR(G).

We now take use of Fajtlowicz’ and Staton’s lower bounds for the independence
number to prove our next theorem. It can be shown that the first bound of the
theorem is sharp; an example of such a graph is the generalized Peterson graph of
order 14.

Theorem 5 (i) If G is a K3-free graph and ∆(G) = 3, then

IR(G) − β(G) ≤
⌊
n

7

⌋
.

(ii) If G contains no Kq (q ≥ 3) and ∆ ≥ 1, then

IR(G) − β(G) ≤
⌊
∆ + q − 4

2∆ + 2q
n

⌋
.

Proof: For any graph G containing no Kq, Fajtlowicz [7, 8] showed that

β(G) ≥ 2n

∆ + q
.

For the particular case ∆ = q = 3, Staton [13] proved a stronger result:

β(G) ≥ n

∆ − 1/5
.

Suppose now that G contains no Kq. Using the same notation as in the proof of
Theorem 3, we obtain

|I| = β(F ) ≥ 2|F |
∆(F ) + q

≥ 4t

∆(G) + q
=

4t

∆ + q
.
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Therefore,

IR(G) − β(G) ≤ |X∗| + |X0| − |I| − |X0|
= |X∗| − |I| ≤ t − 4t

∆ + q
=

∆ + q − 4

2∆ + 2q
2t ≤ ∆ + q − 4

2∆ + 2q
n.

For the case ∆ = q = 3, we apply Staton’s bound:

|I| = β(F ) ≥ |F |
∆(F ) − 1/5

≥ |F |
∆(G) − 1/5

=
2t

3 − 1/5
=

5

7
t.

Thus,

IR(G) − β(G) ≤ |X∗| − |I| ≤ t − 5

7
t ≤ n

7
,

as required.

3 Upper Bounds for the Lower Parameters

Let us consider the differences between the lower parameters. Notice here that trivial
bounds

i(G) − γ(G) ≤ n − ∆ − 1

and
i(G) − ir(G) ≤ n − ∆ − 1

are good for graphs whose maximum degree is close to the order, while for graphs
with relatively small maximum degree it is better to use the bounds below.

Theorem 6 For any graph G of order n with maximum degree ∆ ≥ 3,

i(G) − γ(G) ≤
⌊
∆ − 2

∆
n

⌋
− 1.

Proof: Let X be a minimum dominating set of G such that the number of edges
in 〈X〉 is minimum. Denote all isolated vertices of the graph 〈X〉 by X0 and let
X∗ = X − X0. We put w = |N [X0] − N(X∗)| and t = |X∗|. Also, let

r = max
x∈X∗ |N(x) − X∗| = |N(x∗) − X∗|.

Note that r ≥ 2, for otherwise the private neighborhood of x∗ consists of exactly one
vertex y∗ and the set (X − x∗) ∪ y∗ is a minimum dominating set containing fewer
edges than X , contrary to hypothesis. Also, it is easy to see that ∆ ≥ r + 1. Since
X is a dominating set, we obtain

n ≤ t +
∑

x∈X∗
|N(x) − X∗| + w ≤ t(1 + r) + w
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or

t ≥ n − w

1 + r
.

Consider the graph
G′ = G − (N [x∗] ∪ N [X0]).

Each vertex x ∈ X∗ has a private neighbour. Thus, the graph G′ possesses a matching
M consisting of t − z − 1 edges, where z = |N(x∗) ∩ X∗|. We have

i(G′) ≤ |G′| − |M | ≤ (n − r − z − 1 − w) − (t − z − 1) = n − r − w − t.

Taking into account the above inequalities, we deduce

i(G) − γ(G) ≤ 1 + i(G′) + |X0| − |X∗| − |X0|
= 1 + i(G′) − t

≤ 1 + n − r − w − 2t

≤ 1 + n − r − w − 2
n − w

1 + r

= 1 + n − r − w − 2n

1 + r
+

2w

1 + r

= (1 − 2

1 + r
)n + 1 − r +

1 − r

1 + r
w

≤ (1 − 2

∆
)n − 1

=
∆ − 2

∆
n − 1.

Theorem 7 For any graph G of order n with maximum degree ∆ ≥ 3,

i(G) − ir(G) ≤ min

{⌊
2∆ − 3

2∆ − 1
n

⌋
,

⌊
∆ − 1

∆
n − ∆

2

⌋}
− 1.

Proof: We first prove that

i(G) − ir(G) ≤
⌊
2∆ − 3

2∆ − 1
n

⌋
− 1.

Let X be a minimum maximal irredundant set of G. We denote all isolated
vertices of the graph 〈X〉 by X0 and put X∗ = X − X0. Since X has no redundant
vertex, it follows that PN(x, X) 
= ∅ for any x ∈ X . Note that PN(x, X) ∩ X = ∅
for any vertex x ∈ X∗. For each vertex x ∈ X∗, take one vertex from the set
PN(x, X) and generate the set Y ∗. Obviously, X∗ ∩ Y ∗ = ∅. Moreover, all edges
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between the sets X∗ and Y ∗ form a perfect matching of the graph 〈X∗∪Y ∗〉. Denote
|X∗| = |Y ∗| = t and U = V (G) − N [X ]. We put w = |N [X0] − N(X∗)|. Also, let

r = max
x∈X∗ |N(x) − X∗|

and
s = max

y∈Y ∗ |N(y) ∩ U | = |N(y∗) ∩ U |.
Note that

r ≤ ∆ − 1

and
s ≤ ∆ − 1.

If s = 0, then U = ∅. Hence ir(G) = γ(G) and the result follows by Theorem 6.
Therefore we may assume that s ≥ 1.

We have
n ≤ t + tr + ts + w = t(1 + r + s) + w

or

t ≥ n − w

1 + r + s
.

Consider the graph
G′ = G − (N [y∗] ∪ N [X0]).

Each vertex x ∈ X∗ has a private neighbour. Thus, the graph G′ possesses a matching
M consisting of t − z − 1 edges, where z = |N(y∗) ∩ Y ∗|. We have

i(G′) ≤ |G′| − |M | ≤ (n − s − z − 2 − w) − (t − z − 1) = n − s − w − t − 1.

Taking into account the above inequalities, we deduce

i(G) − ir(G) ≤ 1 + i(G′) + |X0| − |X∗| − |X0|
= 1 + i(G′) − t

≤ n − s − w − 2t

≤ n − s − w − 2n

1 + r + s
+

2w

1 + r + s

≤
(
1 − 2

1 + r + s

)
n − s +

1 − r − s

1 + r + s
w

≤
(
1 − 2

1 + r + s

)
n − 1

≤
(
1 − 2

2∆ − 1

)
n − 1.

The second inequality easily follows from Theorem 6 and the Bollobás-Cockayne
inequality [2]

γ(G) ≤ 2ir(G) − 1.
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Indeed,

i(G) − ir(G) ≤ i(G) − 1

2
(γ(G) + 1)

=
1

2

(
i(G) − γ(G) + i(G) − 1

)

≤ 1

2

(
(1 − 2

∆
)n − 1 + n − ∆ − 1

)

= (1 − 1

∆
)n − ∆/2 − 1.

We complete this section with the following result.

Theorem 8 For any graph G of order n ≥ 3,

γ(G) − ir(G) ≤
⌊
n − 3

4

⌋
.

Proof: Let X, X0, X∗, Y ∗, U and t be the same as in the proof of Theorem 7.
Consider the set D = Y ∗ ∪X0, and put Z = V (G)−N [D] and |Z| = z. We see that
D ∪ Z is a dominating set and therefore

γ(G) − ir(G) ≤ |Y ∗| + |X0| + |Z| − |X∗| − |X0| = z. (1)

Note that any vertex u ∈ U dominates the private neighborhood of a vertex
x ∈ X∗, since X is a maximal irredundant set. Hence the set U is dominated by the
set Y ∗ and Z ∩ U = ∅. We obtain

n ≥ |U | + 2t + z.

We may assume that |U | ≥ 1, for otherwise X is dominating and the result easily
follows. Hence t ≥ 1 and

z ≤ n − 3.

Let us prove that

γ(G) − ir(G) ≤ 1

3
(n − z − 3). (2)

We first suppose that |U | ≤ t. Since

n ≥ |U | + 2t + z ≥ 3|U | + z,

we obtain |U | ≤ 1
3
(n − z). The set X ∪ U is dominating and redundant. Therefore,

γ(G) − ir(G) ≤ |X | + |U | − 1 − |X | = |U | − 1 ≤ 1

3
(n − z − 3).
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Assume now that |U | ≥ t + 1. We have

n ≥ |U | + 2t + z ≥ 3t + z + 1.

Hence t ≤ 1
3
(n− z−1). The set X ∪Y ∗ is dominating and redundant. Consequently,

γ(G) − ir(G) ≤ |X | + |Y ∗| − 1 − |X | = t − 1 ≤ 1

3
(n − z − 4).

Thus, (1) and (2) imply

γ(G) − ir(G) ≤ max
0≤z≤n−3

min{z,
1

3
(n − z − 3)} ≤ n − 3

4
.

We believe that the bound of Theorem 8 can be improved. Moreover, it would be
of interest to find an analogous bound depending on degree parameters and order.
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