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Abstract 

In 1998 Donovan and Howse proved that for all n there exist critical 
sets of order n and size s, where l rt J ~ s ~ n2;n with the exception 
of the case s = rt + 1 when n is even. In this paper we will present 
a construction for this case, where n :2: 6, based on the discovery of a 
critical set of size 17 for a Latin square of order 8. This verifies that 
there does exist a critical set of order n and size rt + 1 when n is even. 

1 Definitions 

For the purposes of this paper, Latin squares of order n are n X n arrays of integers 
chosen from the set X = {O, ... , n - I} such that each such integer occurs exactly 
once in each row and in each column. An example of a Latin square of order 6 is 
shown below. 

0 1 2 3 4 5 
1 2 3 4 5 0 
2 3 4 5 0 1 
3 4 5 0 1 2 
4 5 0 1 2 3 
5 0 1 2 3 4 

A Latin square can also be written as a set of ordered triples {( i, j; k) I where 
symbol k occurs in cell (i, j) of the array}. In this paper, for a Latin square of order 
n, there is an implicit "mod n" after the third element in each ordered triple; that 
is, the ordered triple (i,j; k) refers to (i,j; k (mod n)). 

A back-circulant Latin square, of order n, (referred to as Ben) is a Latin square 
in which the cell (i,j) contains the symbol i+ j (mod n). In terms of ordered triples, 
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A partial Latin square P, of order n, is an n x n array with entries chosen from a 
set X, of size n, such that each element of X occurs at most once in each row and each 
column. Let P be a partial Latin square of order n. Then !PI is said to be the size of 
the partial Latin square and the set of positions S p = {( i, j) I (i, j; k) E P,3k E X} 
is said to determine the shape of P. 

A critical set of a Latin square L is a partial Latin square contained in L such that 
L is the only Latin square of order n with k in position (i,j) for every (i,j,k) E C, 
and no proper subset of C satisfies this requirement. See [2] for further details. 

For a given n, the spectrum of critical sets of order n is the set of values s for 
which there exists a critical set of size s and order n. Papers have appeared which 
provide some information about the spectrum of critical sets, but none of these have 
been able to settle the question of the existence of a critical set of size (27)2 + 1 

and order 2m. The size (27)2 + 1 has reasonable significance, as explained below. 
With this paper, we settle this outstanding question and close one of the gaps in the 
spectrum of critical sets. The construction pertaining to this case is given in Section 
3. For the remainder of this section we provide some background information and 
relevant results. 

Let lcs( n) denote the size of the largest critical set in any Latin square of order 
nand scs(n) denote the size of the smallest critical set in any Latin square of order 
n. It was conjectured by NeIder [4] that lcs(n) = (n2 

- n)/2 and scs(n) = ln2/4J. 
The bound for lcs(n) was shown to be false in 1982, when Stinson and van Rees, [5], 
exhibited examples of critical sets of size greater than (n2 

- n}/2. Unfortunately, the 
research over the last twenty years has not added much information and in general 
an upper bound is given by n2 - n. Fortunately, more is known about scs(n). In 
1978, Curran and van Rees, [2], showed that scs(n) ::; ln2/4J, and more recently 
Bate and van Rees (1] verified that for a special class of critical sets (strong critical 
sets, see [1] for definition) scs( n) 2 l n2 / 4 J. This brings us closer to a lower bound, 
however in general, the size of the smallest critical set still needs to be established. 

In 1998, Donovan and Howse [3], proved that for all n there exist critical sets of 
order n and size s, where l rt J ::; s ::; n2;n, with the exception of the case s = ~ + 1, 
when n is even. It is this case which is settled in the affirmative by this paper. 

In order to validate the construction we require the definition of a Latin inter­
change and an association lemma. 

Let P and pI be two partial Latin squares of the same order, with the same size 
and shape. Then P are pI are said to be mutually balanced if the entries in each 
row (and column) of P are the same as those in the corresponding row (and column) 
of P'. They are said to be disjoint if no cell in pI contains the same entry as the 
corresponding cell in P. A Latin interchange I is a partial Latin square for which 
there exists another partial Latin square I', of the same order, size and shape with 
the property that I and I' are disjoint and mutually balanced. The partial Latin 
square I' is said to be a disjoint mate of I. An example of a Latin interchange is 
given below. 
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9 
3 4 5 6 

4 567 

I 

3 
4 5 
9 4 

I' 

9 
6 7 8 3 
5 6 7 8 

The following lemma clarifies the connection between critical sets and Latin in­
terchanges. 

Lemma 1.1 A partial Latin square C c L, of size s and order n, is a critical set 
for a Latin square L if and only if the following hold: 

1. C contains an element of every Latin interchange that occurs in L; 

2. for each (i, j; k) E C, there exists a Latin interchange Ir in L such that IrnC = 
{(i, j; kn. 

Proof. 

1. If C does not contain an element from some Latin interchange I, where I has 
disjoint mate 1', then C is also a partial Latin square of L' = (L \ 1) u I'. Hence 
C is not uniquely completable. 

2. If no such Latin interchange Ir can be found, then the position (i, j; k) may be 
deleted from C and C \ {( i, j; k n will still be uniquely completable and thus 
a critical set for L. 

2 Critical sets in Latin squares of orders 6 and 8 

Let A = {(i,j; i + j) I (0 ::; i + j ::; 1) V (8 ::; i + j ::; lOn. Then A is a critical set 
of order 6 and size ¥- = 9 in BC6 . Beginning with A, if we remove (5,4; 3) and add 

(3,2; 5) and (3,4; 3) we get A', which is a critical set of size ¥- + 1 = 10 for CA. 

o 1 0 1 0 1 2 3 4 5 
1 1 2 3 4 5 0 

2 3 4 5 0 1 
2 5 3 2 4 0 5 1 3 2 

2 3 2 3 5 4 1 0 2 3 
2 3 4 2 4 3 5 0 2 1 4 

A A' CA 

Let B = {(i,j;i+j) I (0::; i+j::; 2)V(1l::; i+j::; 14)}. Then Bis a critical set 
of order 8 and size ¥ = 16 in BCs. Beginning with B, remove (7,5; 4) and (7,6; 5) 

and add (4,3; 7), (4,5; 4), and (4,6; 5). This gives B', a critical set of size ¥ + 1 = 17 
for £B: 
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0 I 2 0 I 2 0 I 2 3 4 5 6 7 
I 2 I 2 I 2 3 4 5 6 7 0 
2 2 2 3 4 5 6 7 0 I 

3 4 5 6 7 0 I 2 
3 7 4 5 3 6 0 1 7 2 4 5 3 

3 4 3 4 5 7 6 1 0 2 3 4 
3 4 5 3 4 5 7 6 0 2 1 3 4 5 

3 4 5 6 3 6 4 5 7 0 3 1 2 6 

B B' .cB 

3 Critical sets in Latin squares of order n, n even 

The above examples can be generalised to produce critical sets of size rt + 1, when 
n is even. 

Theorem 3.1 Take the critical set 

C = {(i,j;i+j) 1(0::; i+j::; ~ -2) V (3; -1::; i+j::; 2n-2)}. 

Construct the set 

n 
D = (C\ { (n - 1, j; j - 1) I "2 + 1 ::; j ::; n - 2}) 

U {(~,j;j - 1) I ~ + 1 ::; j ::; n - 2} U {(~, ~ - 1; n - I)}. 

Then D is a critical set of size rt + 1. 

The proof is this result is presented below. 
Henceforth, we shall refer to the completion of D as CD. The following process 

outlines how D can be uniquely completed to .cV. In completing D, at each step 
in the completion process the given cell is forced to contain the specified symbol. If 
any other symbol were to be placed in the specified cell, the result would not be a 
partial Latin square. 

We begin by filling row I starting at column j = 0 and moving right to column 
j I - 2. In row ~, fill the cell in column j with 

n - 2, when j = 0; 

j 1, when 1 ::; j ::; ~ - 2; 

~ 2, when j = I' 
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We will fill rows n - 2 to ~ + 1 sequentially, from left to right in columns 0 to ~ - 2, 
then column ~, then column ~ - 1. So, for 2 :S x :S ~ - 1, and 0 :S j :S ~ fill the cell 
in row n - x and column j with 

(n - x) + j (mod n), when j =1= x-I and j =I x - 2; 

n - 1, when j = x - 2; 

n - 2, when j = x-I; 

~ - 1 - x, when j !!:. 
2 ' 

~ - x, when j = ~ - 1. 

When n 2: 8 the triangle bounded by the cells (~ + 1, ~ + 1), (~ + 1, n - 3), and 
(n - 3, ~ + 1) is filled from bottom to top and left to right. If n ;:::: 8, for 3 ::; x :S ~ - 2 
fill the cell in row n-x, columnj = ~+1 toj = ~+x-2 with (n x)+j (mod n). 
For 0 ::; j :S ~ - 3, fill the cell in row n 1 and column j with ~ + j (mod n). Fill 
the cell in row n - 1 and column j with 

n - 1, when j = ~ 2 and 

0, when j = ~ - 1 with O. 

For ~ + 1 :S j :S n - 2, fill the cell in row n - 1 and column j with j - ~ (mod n). 
For 0 ::; x :S ~ - 1, fill the cells in row x sequentially right to left from column 
j = n - 1 to j = ~ - 1 - x with x + j. 

To prove the necessity of each of the symbols in the critical set D, three types of 
Latin interchanges will be used: 

Type (1) 
This Latin interchange uses only two rows and consequently the same symbols in 
each row. The disjoint mate is obtained by interchanging the rows. For example, 
the Latin interchange I and its disjoint mate l' can be represented as: 

I = {(rl' Cl; ed, (rl' C2; e2), .. " (rl' Cm-l; em-I), (rl' Cm; em)} 
U {(r2' CI; e2), (r2' C2; e3), ... , (r2' Cm-l; em), (r2' em; el)}, and 

I' = {(rl' Cl; e2), (rl' C2; e3), ... (rl' Cm-l; em), (rl' em; eln 

U {(r2' CI; ed, (r2' C2; e2), ... , (r2' Cm-l; em-d, (r2' em; em)}. 

Type (2) 
This Latin interchange uses three rows, with the top row containing two elements. 
For example, the Latin interchange I and its disjoint mate I' can be represented as: 

1= {(rl' Cli x), (rl' Cm +1i Y)} 

U {(r2' CI; y), (r2' C2; el), (r2, C3; e2), ... , (r2' Cm; em-I), (r2' Cm+l; em)} 
U {(r3' Cl; ed, (r3, C2; e2), (r3, C3; e3), ... , (r3' Cm; em), (r3' Cm+l; x)}, and 

I' = {(rl' CI; y), (rl' Cm +1i x)} 

U {(r2' CI; el), (r2' C2; e2), (r2' C3i e3), ... , (r2' Cm; em), (r2' Cm +1i y)} 
U {(r3' Cli x), (r3, C2; ed, (r3, C3, e2), ... , (r3, Cm; em-d, (r3, Cm +1i em)}. 
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Type (3) 
These Latin interchanges take a variety of forms and cannot be written as simply as 
Type 1 and Type 2. Full details of these Latin interchanges are presented at the end 
of this section. 

For n = 6, proving that the elements in the example given above are necessary is 
trivial. We assume n 2: 8 and prove the following. The following Latin interchanges 
(h through 110 ) exist in CD: 

Ii is a Latin interchange of Type 1, and h n D = {(~, ~ - 1; n - I)}. 

n 
Ii = {(2",O;n - 2)} 

U {(~,j;j -1) 11 s:. j 5. ~ - 2} 
n n n n n 

U {(- - - l' n - 1) (- -' - 2)} 2'2' , 2'2'2 
U {(n - 2,0; n - 1), (n - 2,1; n - 2) 

U {(n - 2,j;j - 2) 125. j s:. ~ 2} 
n n n n 

U {(n - 2 - - l' - - 2) (n - 2 -' - - 3)} , 2 ' 2 ' , 2' 2 . 

lz is a Latin interchange of Type 1, and 12 n D = {(n - 1, n 1; n - 2)}. 

n n 
12 = {( 2" - 1, 2" - 1; n - 2)} 

U {(~ - 1,j; ~ + j -1)1~ + 1 S:. j S:. n - I} 
n 

U {(n 1, 2" - 1; On 

U {(n 1, j; j - ~) I ~ + 1 5. j 5. n - 2} 

U{(n l,n-l;n-2)}. 

13 is a Latin interchange of Type 1, and 13 n D {(n - 1, ¥; ¥ - I)}. 

13 = {( ~ - 1, j; ~ + j - 1) 10 5. j 5. ~ - 2} 
n n 

U{(2"-1'2";n- 1n 
U {(n - 1, j; j + ~) lOS:. j 5. ~ - 3} 

U{(n-l,~-2;n-1),(n 1,~;~ I)}. 

14 is a Latin interchange of Type 2, and for ~ + 2 5. x 5. n 2, 
14 n D = {(x, ~ - 1- x; ~ -I)}. 
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For ~ + 2 S; x S; n - 2, construct the Latin interchange 

n n n 3n 
H = {(x - - - 1 n - x' - - 1) (x - - - 1 - - 1 - x' n - 2)} 

2 ' , 2 ' 2 '2 ' 
, ,n ,3n 

U{(x-l,Ji X - 1 +J)I2"+1S;J S;2- 1 - x } 

U {(x - 1, n - x; n - 2)} 
n n n n 

U {(x - 1 - - I' x - - - 1) (x - 1 -' x - -) - 2} 
, 2 ' 2 ' '2' 2 

U {(x, j; x + j) I ~ + 1 S; j S; 3; -1 -x} 

U {(x, j; x + j) I n - x S; j S; ~ - 2} 

n n n n 
U {(x - - I' x + -) (x -' x + - - I)}, 

, 2 ' 2" 2' 2 

Then when x = ~ + 2, let 14 = H, and when ~ + 3 S; x S; n - 2, let 14 = 
H U {(x - 1, i; x-I + i) In - x + 1 S; i S; ~ - 2}, 

Is is a Latin interchange of Type 2, and for ~ + 1 S; x ::; n - 2, Is n D = 
{(x,n-l;x-l)}, 

For ~ + 1 S; x S; n 2, construct the Latin interchange 

Is = {(x - %,j; x - % + j) I % - 1 ::; j ::; n -I} 

U {(x - % + 1,j;x - % + 1 + j) I ~ -1 S; j ::; n -I} 
n n 

U {(x, 2 -l;x - 2")' (x,n -l;x -I)}, 

h is a Latin interchange of Type 1, and 16 n D = {(~ + 1, n - 2; ~ - I)}, 
If 4 I n, construct the Latin interchange 

h = {(% - 1, 2j; ~ -1 + 2j) lOS; j < ~} 
n n 

U {("2 - 1; "2 - 1; n - 2)} U 

n , n ,n, n 
U {( 2" - 1,2);"2 - 1 + 2)) I "4 <) < 2"} 

{( n , n ') I ,n } U "2 + 1,2);"2 + 1 + 2) 0 S;) < '4 - 1 

n n n n 
U {(- + 1 - 2' n - 2) (- + 1 - - 1'1)} 

2 ' 2' '2' 2 ' 

{( n , n ') In, n} U "2 + 1,2); "2 + 1 + 2) "4 < ) <"2 ' 

If 4 f n, construct the Latin interchange 

h = {( % - 1, 2j; ~ - 1 + 2j) lOS; j < ~ - 1 } 
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n n 
U {( 2 - 1, 2; n - In 

u {(~ - 1, 2j; ~ - 1 + 2j) I ~ < j < ~} 

u {(~ + 1, 2j; ~ + 1 + 2j) lOs j < ~ - 2} 
n n n n 

U {(2 + 1, 2 - 3; n - 1), (2 + 1, 2; O)} 

{( n , n 2 ') In, n} 
U 2 + 1,2); 2 + 1 +) 4 <) < 2 . 

h is a Latin interchange of Type 1, and Ir n D = {( ~, n - 1; ~ - I)}. 
If 4 I n, construct the Latin interchange 

17 = {(~ - 1,j; ~ + j -1), (~,j; ~ + j) I ~ s j S n - I} 
n n n n n 

u{(2'4;4- 1)'(2,n 1;2 I)}. 

If 4 t n, construct the Latin interchange 

n 2 n-2 n n-2 n-6 
17 = {(-4-' -4-; 2 - 1), (-4-' n - 1; -4-)} 

nn-2n-6 n n 
U {( 2' -4-; -4-)' (2' n - 1; 2 - I)}. 

For ~ + 1 S x S n-2, Is is a Latin interchange of Type 1, and IsnD = {(~, x; x-In, 

n n n n 
Is = {( 2 - 1, x - 2; x-I), (2 - 1, x; 2 + x - I)} 

n n n n 
U{(2'x- 2; 2 +x-1)'(2,x;x-1)}, 

For (~ S x + y < 2n - 2) 1\ (x =J n - 1) 1\ (y =J n - 1), 19 is a Latin interchange of 
Type 1, and 19 n D = {(y, x; y + xn. 

n n n n 
19 = {(y - 2'x - 2;Y + x), (y - 2'x;y +x - 2)} 

n n 
U{(y,x- 2;Y+x- 2)'(Y'X;Y+x)}. 

Where 0 S x + Y S ~ - 2, there exists a Latin interchange 110 of Type 3, where 
honD {(y,x;y+x)}. 

If 0 :::; x + Y S ~ - 2, determine the Latin interchange ho using results found in 
[3]' as follows. 

Let A denote the Latin subrectangle in CDT (the transpose of CD) bounded by 
the cells (x, y; y + x), (n -1, y; Y -1), (x, ~ - 1; ~ - 1 + x), and (n - 1, ~ -1; ~ 2). 
All future column and row references are relative to this subrectangle; that is, a 
reference to the cell (i,j; k) means the cell (i - x,j y; k) in .cVT. 

Let c = ~ y, r = n - x, and e = n + 1 - c. 
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Define the sequence of numbers aI, a2, ... , ap to be integers where 

al = C - 1 (mod e) and, for i ~ 2, 

ai = ai-l (mod e - al - ." - ai-I)' 

Let P be the value where ap =/:. 0 and ap+i = 0 for all i > 0. For i = 1,2, .. " P, let 
6i = al + a2 + ... + ai. Define 

Ao = {(O, 0; x + y), (0, C - 1; c - 1 + x + y)} and if al =/:. c - 1 define 

Bo = {(c - 1 - ae, ae; c -1 + x + y), (c - 1 - ae, (a + l)e; x + y) 

I ° ~ a ~ c 1 - al _ I}. 
e 

If al =/:. 0, define 

Al = {(e, c - 1 - al; c - 1 + e - al + x + y), (e, c - 1; x + yn, 

,B1 = {(al - a(e - al), c - 1 al; c - 1 + x + y), 
(al - a(e - ad, c 1 - al + (a + 1)(e - al); c - 1 + e - al + x + y) 

al - a2 
10::=;a::=;---I}. 

e - a1 

If P ~ 2, for 2 ~ i ~ P, define 

Ai = {(e - 6i-l, C - 1 - ai; C - 1 + e - 6i + X + y), 
(e - 6i-l, C - 1; c - 1 + e - 6i-l + X + yn 

Bi = {(ai - (e - 6i)a, c - 1- ai + a(e - 6i); c - 1 + x + y), 

(ai - a(e - c5i ), c - 1 - ai + (a + l)(e - c5i ); c - 1 + e - 6i + X + y) I 
o < a < ai - ai+l - I}. 

- - e - Oi 

Then the set 110 = AoUBoUAlUBlU ... UApUBp is the required Latin interchange. 
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