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Abstract

A graph G having a perfect matching (or 1-factor) is called n-extendable
if every matching of size n is extended to a 1-factor. Further, G is said
to be (r : m,n)-extendable if, for every connected subgraph S of order 2r
for which G \ V(S) is connected, S is m-extendable and G \ V(S) is n-
extendable. We prove the following: Let p, r, m, and n be positive integers
with p—r > n and 7 > m. Then every 2-connected (r : m, n)-extendable
graph of order 2p is (r + 1: m + 1,n — 1)-extendable.

1. Introduction

We consider only finite simple graphs and follow Bondy and Murty [1] for general
terminology and notation. Let G be a graph with vertex set V(G) and edge set
E(G). For A C V(G), G[A] denotes the subgraph of G induced by A and G \ A4 is
the subgraph of G induced by V(G) \ 4. If G[A] is connected, then a subset A is
said to be connected (if A is a empty set, then it is considered to be connected).
Further, we often identify G[A] with A. If H is a subgraph and v is a vertex, we
may write G\ H or G\ v instead of G \ V(H) or G \ {v}, respectively. If A and B
are disjoint subsets of V(G), then E(A, B) denotes the set of edges with one end in
A and the other in B. For e € E(G), V(e) denotes the set of endvertices of e.

Let n > 0 and p > 0 be integers with n < p — 1 and G a graph with 2p vertices
having a 1-factor (a perfect matching). Then G is said to be n-extendable if every
matching of size n in G can be extended to a 1-factor. In particular, G is 0-extendable
if and only if G has a I1-factor. Further, G is said to be (r, n)-eztendable (resp. [r, n]-
extendable) if G[S] (resp. G\ S) is n-extendable for every connected subset S of
order 2r. Furthermore, a connected graph G is called (r,n)-extendable if G[S] is
n-extendable for every connected subset S of order 2r for which G\ S is connected.

Theorem A(Nishimura and Saito [5]). Let p, r and n be integers withp > r > n > 0.
Then every (r,n)-extendable graph of order 2p is (r + 1,n + 1)-extendable. 0
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Theorem B([5]). Let p,r and n be integers with r > 0 and p—r >n > 0. Then
every connected [r, n}-extendable graph of order 2p is [r — 1, n]-extendable. a

Theorem C(Nishimura[4]). Let p,7 and n be positive integers with p > r > n.
Then every 2-connected {r, n)-extendable graph of order 2p is (r + 1, n)-extendable.
(]

In this paper, we present an extended theorem which is similar to the theorems
above. A connected graph G is called (r : m, n)-extendable if, for every connected
subset S of order 2r for which G \ S is connected, G[S] is m-extendable and G \ S
is n-extendable. From this definition, if G is an (r : m, n)-extendable graph of order
2p, then two inequalities p > r +n and r > m are required.

Theorem 1. Let p,7,m, and n be positive integers with p—r > n and r > m. Then
every 2-connected (r : m, n)-extendable graph of order 2p is (r +1:m+1,n — 1)
extendable.

Note that if a graph G is {r : m,0)-extendable, then G is (r,m)-extendable. Fur-
thermore, by Theorem C, if an even order graph G is 2-connected (r, m)-extendable,
then G is m-extendable. So, we have the following corollary immediately.

Corollary 2. If a graph G is 2-connected and (r : m,n)-extendable, then G is
(m + n)-extendable.

From this corollary, we understand that if a graph G is 2-connected and (r,m)-
extendable but not (m + n)-extendable, then there exists a connected subset T' of
order 2r such that G \ T is connected and not n-extendable.

If p = 2r, then the connectedness condition of Theorem 1 cannot be weakened.
For example, let Ky, and K}, ., be two disjoint complete graphs with order 2n+2.
Let u € V(Koni2) and v € V(Kb ;). Add an edge uv between Koo and Kj, .
Let G be the resulting graph. Now we can easily check that S and G \ S are n-
extendable for every connected subset S of order 2n+2 for which G'\ S is connected.
It is obvious however that G is not 2n-extendable since G cannot have a 1-factor
which contains uv.

2. Preliminary Lemmas.

Our proof of Theorem 1 depends heavily on the following two theorems. We
denote the number of odd components of a graph G by o(G).

Lemma 1 (Tutte [7]).

(I) A graph G has a 1-factor iff o(G'\ §) < |S] for all S C V(G).
(1) o(G\S) —|S| =0 (mod 2) if G has even order.
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Lemma 2 (Plummer [6]).
(I) If G is n-extendable, then G is (n — 1)-extendable.

(II) If G is connected and n-extendable, then G is (n + 1)-connected. o

Next, the following two lemmas are easily deduced from the definitions of varia-
tions of extendability.

Lemma 3 . Let m,n, and r be positive integers with » > m. If G is 2-connected
and (r : m,n)-extendable, then G is (r + 1, m)-extendable.

Proof. Let G be a graph satisfying the hypothesis. By the definitions and Lemma
2 (1), if G is {r : m, n)-extendable, then G is (r : m,n — 1)-extendable. So, we have
G is (r,m,0)-extendable, inductively. Then G is also (r, m)-extendable. Since G is
2-connected, G becomes (r + 1, m)-extendable by Theorem C. O

Lemma 4 . Let m,n, and r be positive integers with » > m. If G is 2-connected
(r : m, n)-extendable, then, for every connected subset T of order 2(r 4 1) for which
G\ T is connected, G\ T is (n — 1)-extendable.

Proof. Let G be a graph satisfying the hypothesis, T' a connected subset of order
2(r +1) for which G\ T is connected. Then we may assume that T is m-extendable
by Lemma 3 and that T is (m + 1)(> 2)-connected by Lemma 2 (II). So, since G
is connected, there exists an edge uv in E(T) such that T\ {u, v} is connected and
E(u,G\T) # 0. Let M be an arbitrary matching of G \ T with size n — 1. Set
S = T\ {u,v}. Clearly, G\ S is connected. Therefore, S is m-extendable and G\ S is
n-extendable by hypothesis. Then M U{uv} can be extended to a 1-factor F' of G\ S.
Thus G\ T has a 1-factor F'\ {uv} which contains M, or G\T is (n—1)-extendable.

0

3. Proof of Theorem 1.

Let p,r,m,n, and G be as in the theorem. Suppose, to the contrary of the
conclusion, G is not (r +1: m+ 1,n — 1)-extendable. So, there exists a connected
subset T of order 2(r + 1) for which G \ T is connected, and which satisfies the
following:

(i) T is not (m + 1)-extendable or (ii) G\ T is not (n — 1)-extendable.

Now, for such a subset T', G\ T is (n— 1)-extendable by Lemma 4. Therefore we may
assume that T is not (m -+ 1)-extendable. Let M = {ej, ey, ..., €m+1} be a matching
of T which is not extended to a 1-factor of T. And we set B = UZ{' V(e;). Then,
by Lemma 1 (I), there exists a set A C T\ B such that o{(T'\ B) \ A) > |A|. Clearly
since G is even order, for this set A there exists a positive integer k such that

o(T\ B\ 4) = o(T'\ B) \ 4) = | 4] + 2

by Lemma 1 (IT}. Throughout our proof of Theorem 1, we consider that such a set
A is fixed. By the way, we may assume that 7" is m-extendable by Lemma 3. So,
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for every edge e; € M, T must have a 1-factor which contains M \ {e;}. Again, by
Lemma 1 (I), we have

o((T\ (B\V(ex))\ 4) < |Al.

Thus every V(e;) must join at least 2k odd components in 7'\ B \ A.

Since T is connected m-extendable and m > 0, T is (m + 1)(> 2)-connected
by Lemma 2 (II). Therefore, we can decompose T into V(O1) UV (P) U ... UV (P)
satisfying the following:

(i) O is a longest cycle of T and

(ii) P, (2 <i<1)is alongest path of T\ (V(O1) U (U jZ5 V(P))))
with end vertices a;, b; such that a;z;, byy; € E(T), where z;,y;
€ V(01) U (U iZh V(Fy)) and z; # yi.

I P, = wyws... . w, (w; = a; and w, = b;), then z; Py; denotes the path rwiws . . . wey;.
For O, and 2;FPy; (2 < i < k), we define an orientation, respectively. And we denote
by z*, 2~ the succesor and the predecessor of a vertex z on O; (or F;) accord-
ing to the orientation, respectively. Since G is connected, there exists a vertex v
of T = V(O1) UV (U=, P;) which is adjacent to a vertex of G \ T. Then, by the
property of P, T \ {v,v*} is connected. Obviously G \ (T \ {v,v*}) is also con-
nected. Hence T\ {v,v*} and G\ (T'\ {v,v"}) are m-extendable and n-extendable,
respectively. Now since G\ (T'\ {v,v*}) is (n + 1){> 2)-connected by Lemma 2
(I), E(v*,G\ T) # 0. Applying the same argument but replacing v* to v, we
have E(vtt,G\ T) # 0. Similarly, we have E(v™,G\T)), E(v=",G\T) # 0, etc.
Consequently we can prove that each vertex of 7' is adjacent to a vertex of G\ T In
particular, we have the following:

T\ {u,v} and G\ (T'\ {u,v}) are connected for each edge uv on Oy U (U=, z; Piys).

Let {u,v} be a set of distinct two vertices of T such that T'\ {u, v} is connected.
Here notice that u might be non-adjacent to v and that G\ (T"\ {v, v}) is connected.
Let C = {C},Cy,...,Ca} (resp. D = {Dy, Dy, ..., Dg}) be the set of odd components
(resp. even components) of (T'\B)\A. Then T = AUBU(U, V(Ci))U(Ule V(D;)).
We consider nine cases.

Set S =T \ {u,v}. Note that S is m-extendable and k is positive.

Case 1. u,v € A.
Let e € M and set A' = (A\ {u,v}) UV {(e). Since S\ (B \ V(e)) has a 1-factor,
we have

|A] = [A] > o(S\ (B\V(e)) \ &) = o(T \ B\ A) = |A| + 2k,
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or k <0, which contradicts that & is positive.

Case2. u€ Aand v € B.
Let vy € M and set A’ = (A\ {u}) U {y}. Then we have

|4] =41 2 o(S\ (B\ {v,y}) \ &) = o(T \ B\ A) = [A] + 2k,

which is a contradiction.

Case 3. ue Aandv € D,.
Let e € M and set A" = (A \ {u}) UV (e). Then we have

Al +1= 4> oS\ (B\V(e))\ A) > o(T\ B\ A) + 1= |A] + 2k + 1,

which is a contradiction.

Case 4. u,v € B and uwv € M.
We have

Al Z o(S\ (B\{u,v}) \ A) = o(T \ B\ A) = |A| + 2%,

which is a contradiction.

Case 5. w € B and v € D;.
Let uz € M and set A’ = AU {z}. Then we have

Al +1= 4] 2 o(S\ (B {u,2}) \ 4) 2 o(T\ B\ 4) +1 = |A] + 2k + 1,

which is a contradiction.

Case 6. u€ A and v € C;.
Let e € M and set A" = (A \ {u}) UV (e). Then we have

Al +1= 4] 2 o(S\ (B\V(e) \ A) 2 o(T\ B\ A) =1 = |A| + 2k~ 1,

or k < 1. Then we have k = 1 since k is positive.

Case 7. u,v € B and uv ¢ M.
Note that S has a 1-factor even if S is O-extendable. Let ux,vy € M and set
A'= AU {z,y}. Since S is (m — 1)-extendable by Lemma 2 (I), we have

Al+2 > |4 2 oS\ (B\ {z,y}) \ &) = o(T \ B\ 4) = |A| + 2k,
Which implies & = 1.
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Case 8. u€ Band v € C;.
Let uz € M and set A’ = AU {z}. Then we have

|Al+1=14]20(S\ (B\{zDh\ A) 2 o(T\ B\ 4) -1 =[A| +2k - L.

We have k£ = 1.

Case 9. u,v € Cyor u,v € Dj.
Let e € M and set A’ = AUV (e). Then

4] +2 = [4] > o(S\ (B\ V(e))\ 4) > o(T \ B\ 4) = | 4] + 2k.

We have k = 1.

Suppose that u and v are vertices satisfying one of the situations of Cases 1-5.
Then T \ {u,v} is disconnected. In particular, T\ V(e;) is disconnected for every
e; € M. Furthermore, if uv € E(T), then uv is not an edge on O; U (U, z: Pys).
Conversely, since uv on Oy U (U, z:P;y;) does not join two distinct components of
(T\ A)\ B, every edge uv on O; U (U=, z;P;y;) satisfies the one of Cases 6-9. Now
since M is not empty, we have an edge e = wyw, € M. Notice that w, is in B
and that T\ V(e) is disconnected. By observation of the various cases, wy is in
BuU(U%, C:), and wi is not wy. Similarly, wi € BU (U, C;) and wy # wa. Let @
be a component of T'\ V(e) containing wy. Since T'\ {wq, w7} is connected, it is m-
extendable. Hence, it is also 2-connected by Lemma 2 (II). Then there exists a vertex
z of Q (or Q\ {wy} if wy is in Q) which is adjacent to a vertex of (T'\ {w, w2}) \ Q.
Therefore, Q is not a component of T\ {wy, wo} = T'\ V(e), which is a contradiction.
This contradiction completes the proof of Theorem 1. O

The following property can be considerd as an extension of factor-criticality. A
graph G is said to be 2n- factor-critical if the graph remaining after deletion of any
2n vertices from G has a 1-factor (a perfect matching). Clearly, this property is
stronger than that of extendability, that is, if a graph G is 2n-factor-critical, then G
is n-extendable.

Now let r,m, and n be nonnegative integers. A connected graph G is called
(r : m,n)-factor-critical if, for every connected subset S of order r for which G \ S
is connected, G[S] is m-factor-critical and G \ S is n-factor-critical. Similarly, we
can also define that a graph becomes {(r, n)-factor-critical (or (r,n)-factor-critical
or [r,n]-factor-critical). Then, by the argument quite similar to that in the proof
of Theorem 1, we have the following results.

Theorem 3. Let p,r,m, and n be positive integers with p —r > n and r > m.
Then every 2-connected (2r : 2m, 2n)-factor-critical graph of order 2p is (2(r + 1) :
2(m + 1), 2(n — 1))-factor-critical.

Corollary 4. If a graph G is 2-connected and {2r : 2m, 2n)-factor-critical, then G
is 2(m + n)-factor-critical.
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Finally, we conjecture the following:

Conjecture. Let n,p, and r be integers such that 1 < n < randp—r > n,
and let G be an (n + 1)-connected graph of order 2p. If for every connected subset
S € V(G) with |S| = 2r (for which G\ S is connected), S or G'\ S is n-extendable,
then G is also n-extendable.

In [4], we proved that for 2-connected graphs, Theorem C contains the following
theorems:

Theorem D (Nishimura [2]). Let G be a connected graph of order 2p (p > 3), and
let 7 and n be integers such that 1 < n < r < p. If for some integer r, every induced
connected subgraph of order 2r is n-extendable, then G is n-extendable.

Theorem E (Nishimura [3]). Let G be a connected graph of order 2p. Let r and
n be positive integers such that p —r > n+ 1. If G \ S is n-extendable for every
connected subset S of order 2r, then G is n-extendable.

If the conjecture above is correct, then this will be ‘another’ extension of these
theorems.
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