Improvements on inequalities for non-negative
matrices™

Zhou Bo

Department of Mathematics, South China Normal University,
Guangzhou 510631, P. R. China

Abstract

We prove that there is an integer k¥ < (n® — 2n + 4)/2 such that the
diagonal entries of A* are all positive for any non-negative irreducible
n X n matrix 4, and that there are integers 4, j with 0 < ¢ < j < 32
such that A* < A7 for any non-negative n x n matrix A with no entry in
(0,1) and n > 2. The results of Wang and Shallit [Linear Algebra Appl.
290 (1999) 135-144] are thus improved.

1. Introduction

In this paper we will be concerned with matrices and vectors with non-negative
entrices. For a matrix A = (a;;) and scalar ¢, by the inequality A > ¢ we mean that
a;; > ¢ for all 4, j, and similarly for the relations A > ¢ and A = ¢. For matrices A
and B of the same dimensions, by A > B we mean the inequality holds entrywise.
We adopt similar conventions for vectors.

For an n x n matrix A, by diag(A) we mean the vector containing the diagonal
entries of A. Let I denote the identity matrix.

A square matrix A is said to be reducible if there is a permutation matrix P such

that
S
PAP'“(D c)’

where the diagonal blocks B and C are square matrices. A is irreducible if it is not
* reducible.

For an irreducible matrix A, let B(A) be the least integer £ > 1 such that
diag(A*) > 0. Define A(n) = sup B(A), where the supremum is over all irreducible
n X n matrices. Recently Wang and Shallit [1] proved that S(n) < n(n~1) forn > 2.
They posed the problem of determining a more precise upper bound for 3(n).
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For a non-negative n x n matrix A with no entry in (0,1), let a(A) be the least
positive integer j such that there exists an integer i with 0 < i < j such that A* < A47.
Define a(n) = sup a(A), where the supremum is over all non-negative matrices A
with no entry in (0,1). Wang and Shallit [1] have proved that a(n) < 2". Asis
remarked in [1], this inequality is almost surely not best possible.

In this paper we prove more precise bounds for 3(n) and a(n).

2. Bound for S(n)

The graph of an n x n matrix A = (a;;) is the directed graph on vertices
vy,Vg, - -+, U, such that there is an arc from v; to v; if and only if a;; > 0. We
denote the graph of A by G(A4). An s-cycle is a (directed) cycle of length s.

An irreducible matrix A is primitive if there is a positive integer [ such that
A" > 0. The least such [ is called the exponent of A and is denoted y(A).

For an irreducible matrix A, the greatest common divisor of all cycle lengths of
G(A) is called the index of imprimitivity of A and is denoted d(A). It is well known
(see, e.g., [4]) that a matrix A is irreducible if and only if G(A) is strongly connected
and that an irreducible matrix A is primitive if and only if d(A) = 1.

We first introduce the following lemmas, which we will use to estimate §(A) for
an irreducible matrix A.

Lemma 1 [3]. If A is an n X n primitive matriz whose graph has at least three
distinct cycle lengths, then v(A) < [(n? — 2n +4)/2].

Lemma 2 [2]. Suppose X andY arer x t and t X r non-negative matrices and
neither has a zero row or column. Then XY is primitive if and only if Y X is, and
if XY and Y X are primitive, then y(Y X) -1 < y(XY) <y X)+1.

Lemma 3 [5]. If A is an n x n primitive matriz, then v(A4) < (n - 1)* + 1.
Our first theorem refines the bound for 3(n) obtained in [1].

Theorem 1. Let
n?—2n+ 4j

o= |23
Then B(n) < f(n).

Proof. Let A be an irreducible n X n matrix with G = G(A). Denote by
L(G) the set of cycle lengths of G . If G contains an n-cycle, then 8(4) < n < f(n).
Suppose in the following that G contains no n-cycle. There are two cases to consider,
based on the primitivity of A.

Case 1: A is primitive.

Case 1.1: |L(G)| = 2. Suppose L(G) = {p,q} withp < g < n—-1. Ifp+g > n+1,
then every p-cycle interects every g-cycle, and hence 8(A4) < p+¢ < (n—2)+(n—1) =
2n — 3 < f(n), while if p + ¢ < n, then S(A) < pg < ((p+9)/2)* < n?/4 < f(n).

Case 1.2: |L(G)| > 3. In this case, we have n > 4. By Lemma 1 we have
B(A) < v(4) < |(n* - 20+ 4)/2] = f(n).
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Case 2: A is not primitive. Suppose d(A) = d > 2. By classical results on
imprimitive matrices (see [4, pp.71-73]), there is a permutation matrix P such that

0 A 0 -+ 0
0 0 A -~~~ 0
PTAP = oot
0 0 0 "~ Ay
4 0 0 - 0

where the diagonal zero blocks are square and-each block A; has no zero row or
column; furthermore, if A; is of dimension n; X n;41 (ngy1 = ny), and we put B; =
AiAjpr - AgAr--- Ajy, then

B, 0 - 0
Pratp=| 7,
0 0 - By

where B; is an n; X n; primitive matrix for each ¢ with 1 <7 <d.

If d = n, then clearly (4) =n < f(n). f n =3 and d = 2, then §(4) = 2 <
f(8)=3. Suppose 2<d<n-1andn > 4.

Let n,, = llgiéld n; where 1 <m < d and y(B;) = max v(B;) where 1 <t < d.

We claim that y(B;) < ¥(Bm) + 1. This is obvious if ¢ = m. Suppose with-
out loss of generality that 1 < ¢t <m < d. Let X = AjAyy1- Ay and ¥ =
AmAmyr - AgAr - - Ay, Then By = XY and B, = YX. By Lemma 2, we have
Y(B:) = v(XY) < y(YX) 4+ 1=v(By) + 1, as desired.

Note that ny + ng + - -+ + ng = n. We have n,, < n/d. It follows from Lemma 3
that
Y(Bt) < v(Bm) +1
(M —1)2+1+1

1) +2

il

max, v(B;)

INIA

Hence

B(A) d max y(B;)

1<i<d
d(E=1)+2d
(n=d)? 4 2d.

- The function h(d) = (n — d)?/d + 2d is a decreasing function of d in [2,7/+/3] and
an increasing function in [n/v/3,n — 1]. Hence it assumes its largest value either for
d=2ord=n-—1. We have .

h(2) =(n-2)?/2+2, hin-1)=2(n—1)+1/(n—1).

It is easy to see that [h(n—1)] < |h(2)] < f(n) forn > 6, and |h(2)] < |h(n—1)] <
f(n) for n =4 or 5. Hence

B(4) < h(d) < max{[h(2)], [M(n - 1)]} < f(n). O
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3. Bound for a(n)

For a non-negative n X n matrix A with no entry in (0,1), Wang and Shallit [1]
proved that a(n) < 2" for all n > 1, and this bound cannot be replaced by eV nlogn,
We are going to improve this result. First we give a lemma that will be used.

Lemma 4 [1]. Suppose A > 0 is an n x n matriz of the form
B 0
-(25)

where B, D are square matrices with D > I. For integers | > 0, define the matrices

Cy by
B 0
I
A‘(cl Dl)'

Then for all 1 > 0, we have C; < Ciyy and D' < D1,
An easily verified fact is that f(n) = |(n® — 2n+4)/2] < 3" for all n > 2.
Theorem 2. For alln > 2, we have a(n) < 3¥/2,

Proof. Let A be a non-negative n x n matrix with no entry in (0,1). We use
induction on n to prove the theorem. For n = 2, if A is irreducible, then clearly
A% = I < A?, while if A is reducible, then we have either A = A% or A2 = A% = 0.
Hence a(A4) < 3 for n=2.

Assume n > 3 and the result holds for all m with 2 < m < n. The proof is now
divided into the following two cases.

Case 1: A is irreducible. By Theorem 1, there is an integer k, 1 < k < f(n), such
that diag(A4*) > 0. Note that every positive diagonal entry of A% is > 1. We have
I = A" < AF. Hence aA) < k < f(n) < 3"2,

Case 2: A is reducible. There is a permutation matrix P such that

Ay 0 -0 0
prap= |t A 0
Atl At2 e Att
where Aj1, Agg, -+ -, Ay are square matrices that are either 0 or irreducible.

Case 2.1: Ay = 0. The last column of A is 0. We write

B 0
4=(28)
where z is a vector of dimension n — 1. Note that n — 1 2. By induction,

>
o(B) < 3(=D/2_je. there are integers i,j with 0 < i < j < 3™1/2 such that
Bt < BY. It follows that

. Bi+l 0 Bj+1 0 i
i+l . X — AJ+1
A .‘(:EBZ O)S(wB’ 0) AT
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and 1 <i+1<j+1<30-1/241 <32 Hence a(A) < 372,
Case 2.2: Ay isirreducible. Suppose Ay is of dimension mxm with1 < m < n—1.
By Theorem 1, there is an integer k£ with 1 < k < f(m) < 3™/2 such that A% > I.

We write B
0
A= ( 5 )

Case 2.2.1: B is 0 of dimension 1 x 1. Then C is a column vector of dimension
n — 1. By similar arguments as in Case 2.1, we have

; 0 0 0 0 j
A+l — : - . - = A+l
- ( ALC Al ) = (A{t A ) B

and 1 <i+1<j+1<30-D/241<3%2 Hence aA) < 372,

Case 2.2.2: B is not 0 of dimension 1 x 1. Then we have either m < n - 2 or
B is of dimension 1 X 1 but not 0. In the former case, we know by the induction
hypothesis applied to B* that there are integers 4,7 with 0 < i < j < 3(™)/2 guch
that (B¥)! < (B*)7, while in the later case we have (B*)' < (B*)’ where i = 0 and

j = 1. Note that
Bt 0
ko
#=(3 )

for some Cy. By Lemma 4, (A*)! < (4%)Y and 0 < ki < kj < 3m/23(n-m)/2 = 3n/2,
Hence a(A) < 372,
The proof is now completed. O
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