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Abstract

We bring to conclusion the investigation of three problems about se-
quencings for finite groups: the existence of harmonious sequences in
dicyclic groups, the R-sequenceability of dicyclic groups, and the R-
sequenceability of the nonabelian groups of order pq, where p and g are
primes.

Introduction

Various types of sequences of the elements of a finite group have been studied in
connection with questions in combinatorics. In this article we discuss harmonious
sequences and R-sequences, both of which are connected to complete mappings of a
finite group G.

Definition 1 A complete mapping of G is a permutation g — 6(g) of the elements
of G such that ¢ : g — g6(g) is again a permutation of the elements of G. In this
case, the mapping ¢ is called an orthomorphism of G.

The idea of a complete mapping was introduced by H. B. Mann [5] and studied
later by L. J. Paige [6]. Results related to this notion and to those that follow are
discussed in A. D. Keeedwell’s recent survey [4].

Definition 2 A group G of order m is called harmonious if its m elements can be
listed in a sequence

91,92,y 9m

such that the products
9192, 9293, - - - gm—19m, ImJ1

of consecutive elements are all distinct.
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These sequences were introduced in [1]; if G has a harmonious sequence, then
9 = (91,9 ---,9m) is a complete mapping of G, expressed as a single m-cycle.
Harmonious groups include all groups of odd order, the nontrivial finite abelian
groups having noncyclic Sylow 2-subgroups (except for the elementary abelian 2-
groups), and the dihedral groups D, of order 2n whenever n is divisible by 4 or
n = 6m, m odd [1]. In Section 1 we discuss harmoniousness in dicyclic groups.

Definition 3 A group of order m is called R-sequenceable if its m elements can
be listed in a sequence

= 1’92"",gm
such that the partial products g1, 9192, 919293, - - - 919293 - - - gm—1, are all distinct and
919293 - - - Ym—-19m = 1. "

If G has an R-sequencing, then there is a complete mapping 6 of G such that
the corresponding orthomorphism ¢ fixes one element and permutes the remaining
elements in a single cycle. The dihedral group D, is R-sequenceable if and only if
n is even [3]. We treat this concept for dicyclic groups in Section 2, and for the
nonabelian groups of order pg (p and ¢ prime) in Section 3.

In each of the next three sections, the complete result is designated as a Theorem.
Previous results are indicated as Propositions; the new contributions are clearly
indicated in our discussion.

1 Harmoniousness of dicyclic groups

For an n X n matrix M, the (i, j)-entry of M is denoted by M (i, j). For a permutation
7 of degree n, the collection of n elements {M(i,7(7)), i = 1,2,...,n} is denoted by
7(M). The dicyclic group Q2, of order 4n is defined by

Qo = {0, f: ™ =1, =a",af = fa”).
The following proposition was proved in [7].
Proposition 1 Let A and B be two n x n matrices defined by
AG,j)=1i+j—2 mod2n, i,j=12,...,n
B(i,j)=n—-i—j+1 mod2n, ¢,j=12,...,n
Then the dicyclic group Qan is harmonious if there ezist two permutations m and 0

of degree n such that 6o is an n-cycle and 7(A)UB(B) is a complete set of residues
modulo 2n.

Sketch of the proof. Let f = § o-r. Let ¢ be an integer with 1 < ¢ < n. For any
fixed integer d, we define
baicy = —f7H(e) + d,
by = fHe) +d -1,
g1 = 7f7He) = 1,
ag =7f ) +n—1.
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‘We notice that

bzi + @91 = A(fi"l(c), Wfi_l(C)) + d and
baiy1 — az = B(nf*71(c), f(c)) + d.

Direct calculation shows that
{boi —=byic1 +m:i=1,2,...,n}U{ag +az-1:1=1,2,...,n}
is a complete set of residues modulo 2n and
{bai1 — a2 11 =1,2,...,n} U {by; + agi_; :z"= L,2,...,n}=7w(4A)UB(B) +d

which is also a complete set of residues modulo 2n by our hypothesis. Therefore, the
following sequence is a harmonious sequence of Qo,:

ﬂabl’ ﬂabz, aal’ aaz, ﬂab3, ﬂab"‘, aaa’ a‘“, o ﬂab2n—1’ ﬂab%l, a1 , o

By using Proposition 1 the following result was proved in [7].
Proposition 2 If n is a multiple of 4 or 6, the dicyclic group Q,y, is harmonious.

It remains to deal with the case of n = 4k + 2. We define two permutations 7
and @ of degree n by

¢

z+2k+1 ifl1<z<k,
r4+2k+2 ifk+1<z <2k,
m(z) =<{ z—2k if2k+1<2<3k+1,
3k +2 if x = 3k + 2,
z—2k—1 if3k+3<z<4k+2,
1 ify=1,

a4k +2 ify=2,

y+2k—-1 if3<y<k+2,
Oy) =< k+1 ify==Fk+3,
y+2k—-2 ifk+4<y<2k+3,
y—2%—2 if2%+4<y<3k+2
| y—2k—1 if3k+3<y<4k+2.

By the definitions of matrices A and B in Proposition 1, we obtain

m(A) = {2k, 2k + 1,2k + 2,2k + 3, ..., 4k, 4k + 2,4k + 3,4k + 4,4k + 5, . .. , 6k,
6k + 1,6k + 2}

and

0(B) = {0,1,2,3,...,2k — 3,2k — 2,2k — 1,4k + 1,6k + 3,6k +4, ... 8k + 1,
8k + 2,8k + 3}.
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Therefore, m(A) U §(B) is a complete set of residues modulo 2n.

Considering k modulo 3, we find that in two cases # o7 is a cycle of length n. If
k = 3t, by direct calculation, we have fon = (1 4k 4k~ 34k ~64k—9 ... 3k+6
3k+33k+13k3k—13k—2 ... 2k+32k+24k+24k—-14k—44k~T7 ...
3k+53k+2kk—-1k—2k-3...324k+14k—-24k~5 ... 3k+T73k+4
k+1k+2k+3 ... 2k 2k + 1) which is an n-cycle.

Ifk =3t+2, we have Qo = (1 4k 4k —34k—64k—-9 ... 3k+53k+2k k-1
k—2k—-3...324k+14k—24k—-5 ... 3k+63k+33k+13k3k—-13k-2 ...
2k+32k+24k+24k~14k—44k—7 ... 3k+73k+4 k+1k+2k+3 ... 2k 2k+1)
which is a cycle of length n.

Therefore, by Proposition 1 we can state

Proposition 3 Ifn = 12t+2 orn = 12t+10, the dicyclic group Qa, is harmonious.

In the remaining we have case n = 12t + 6, and this is covered by Proposition 2.
It is shown in [1] that Qo is not harmonious if n is an odd integer or n = 2. Hence,
by Propositions 2 and 3 the following is true:

Theorem 1 Q,, is harmonious if and only if n is an even integer greater than 2.

It is obvious that a harmonious group may have many harmonious sequences.
We can, for example, give an alternative construction for the case of n = 8%k + 2 as

follows.
Let 7 and @ be permutations of degree n defined by

(4k+2+7 f1<z<2%-1,

4k +4+ 2z if 2k <r <4k —2 and z is even,
2k+1 ifr=2k+1,

n(z) =< 4k+=z if2k+3 <z <4k+1 and z is odd,
4k +2 if x = 4k,

z—4k -1 ifdk+2 <1 <8k+2and z # 6k + 2,
| 6k+2 ifz=06k+2,

y ify=1,
O(y) =4 dk+y if2<y<4k+2,
y—4k~1 ifdk+3 <y <8k+2.

By the definitions of matrices A and B in Proposition 1, we have

w(A) = {4k,4k + 1,4k +2,...,8k - 1,8k,8%k + 2,8k +3,...,12k + 2}
mod 2n and
6(B) = {0,1,2,...,4k——1,8k+1,12k+3,12k+4,...,16k+3}mod 2n.

Therefore w(A) U 6(B) is a complete set of residues modulo 2n.

By direct calculation, we have fom = (123 ... 2k —1 2k 2k+3 2k +2
2%k +52k+42k+72k+6 ... 4k+14k 8 +28k+18k 8 —~1 ... 6k+3
6k +22k+16k+ 16k 6k—1 ... 4k + 2) which is an n-cycle.
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2 The R-sequenceability of dicyclic groups
The following two propositions were proved in [8].

Proposition 4 @, is R-sequenceable if there are integers ag,as,...,a,—1 and by,
ba, ..., bep satisfying

(1) 0,az,as,...,02,-1 are distinct mod 2n,
(2) by, ba, ..., b are distinct mod 2n,

(8) 0,a0,a3 — a2, .., 8n — Qn1, bny1 = by by — by, ..., bop — ban—1 are distinct
mod 2n,

(4) by + an, by +anp41+n, by +Qpt1, by +Qni2 +n,b3+an+2, Ceey bp—1+aon-1 +n, by +
Gon—1, ban + 1 are distinct mod 2n.

Proposition 5 Let A and B be two n X n matrices defined by

A(i, ) = Inf24+i+j5—1 mod2nifi<n/2
IIE /2 i+ mod 2n if i > n/2
B(i,j) = nf2+i+j—1 mod2n ifi <n/2
L) = n/2+i+j mod 2n if 1 > n/2.

Then the dicyclic group Qa, is R-sequenceable if there exist two permutations m and
6 of degree n such that m 007! is a cycle of length n with 8(1) = n, and 7(A4) U 6(B)
is a complete set of residues modulo 2n.

Theorem 2 @y, is R-sequenceable if and only if n is an even integer greater than
2.

Proof. It was shown in [8] that for n = 2, and for n odd, Qs, is not R-sequenceable,
and for n = 0 mod 4, @)y, is R-sequenceable. Thus we assume that n = 4k — 2 where
k > 1is an integer. We modify the proof of the case of n = 4k in [8] by defining the
permutations of = and 6 by

(@) = z+2k—1 if1<z<2k-1,
Tl z-2k4+1 if2k <z <4k -2,
o= { V=2 H2Sy<oh-Ty#k+l,
v = y—2k+2 if 2k <y < 4k — 3,y # 3k — 2, together with
8(1) = 4k — 2,6(4k — 2) = 1,0(k + 1) = k, and 9(3k — 2) = 3k — 1.

By the definitions of A and B in Proposition 5, we have 7{4) = {1,2,3,...,4k — 2}
and 6(B) = {4k — 1,4k, 4k+1,...,8k — 4}. Hence 7(A) UO(B) is a complete set of
residues modulo 2n.

Notice k > 1. By direct calculation, we have mo 07! = (2k -1 2k — 2 ...
k+1k3k3k+13k+2 ... 4k—-22k2k+12k+2 ... 3k—-1k-1k-2...21)
which is a cycle of length n. Hence by Proposition 5, @, is R-sequenceable. [ ]

191




By using Proposition 4 we can give a distinct R-sequencing of Qu, from the
construction indicated in the proof of Theorem 2. This construction can serve as an
alternative proof to Theorem 2 for the case n = 8k + 2.

We define the sequences (1) and (2) in Proposition 4 as follows:

Sequence (1), of 2n — 1 elements, can be given in seven segments, with numbers
of elements and rule of construction given by

(i) 8k + 2 elements: 0, 8k + 1,1, 8%, 2,8k -1, ..., 4k, 4k + 1;
(ii) 2k elements: 16k + 3, 16k + 2, 16k +5, ..., 14k + 5, 14k + 4;

(iii) 2k — 2 elements: 14k +1, 14k + 2, 14k — 1, 14k, 14k — 3, 14k -2, ..., 12k +5,
12k + 6;

(iv) 2k elements: 12k + 3, 12k + 2, 12k +1, 12k, ..., 10k + 4;
(v) The single element 14k + 3;

(vi) 2k + 1 elements: 10k + 3, 10k +2, ..., 8k + 3;

(vii) The final element 12k + 4.

Similarly sequence (2), of 2n elements, is given by
(i) 2k + 1 elements: 8k + 1, 8%, 8k —1, ..., 6k + 1;

(ii) 2k — 2 elements: 6k — 2, 6k — 1, 6k — 4, 6k — 3, 6k — 6, 6k — 5, ..., 4k + 2,
4k + 3; ‘

(iii) 2k elements: 4k, 4k — 1,4k -2, ..., 2k + 1;

(iv) the single element 6k;

)
)
(v) 2k + 1 elements: 2k, 2k - 1,2k -2, ..., 1, 0;
(vi) the single element 4k + 1;

)

(vil) 8k + 2 elements: 12k + 3, 12k + 2, 12k + 4, 12k + 1, 12k + 5, 12k, 12k + 6,
12k -1, ..., 16k + 3, 8k + 2.

In the following examples, semicolons separate the segments in the listing of

sequence elements. k = 1, one segment of each sequence is vacuous (noted by a
repeated semicolon).

When k = 1, so that n = 8k + 2 = 10, the sequences are
(14): 0,9,1,8,2,7, 3,6, 4, 5; 19, 18;; 15, 14; 17; 13, 12, 11; 16, and
(21): 9,8, 7;;4,3,6; 2,1, 0; 5; 15, 14, 16, 13,17, 12, 18, 11, 19, 10.
When k = 2, so that n = 8k + 2 = 18, the sequences are
(15): 0,17, 1, 16, 2, 15, 3, 14, 4, 13, 5, 12, 6, 11, 7, 10; 8, 9; 35, 34, 33, 32; 29, 30;
27, 26, 25, 24; 31; 23, 22, 21, 20, 19; 28, and

(20): 17, 186, 15, 14, 13; 10, 9; 8, 7, 6, 5; 12; 4, 3, 2, 1, 0; 9; 27, 26, 28, 25, 29, 24, 30,
23, 31, 22, 32, 21, 33, 20, 34, 19, 35, 18.
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3 R-sequenceability of groups of order pq

First we state an alternative definition of R-sequenceability. It is easily seen that
this definition is equivalent to Definition 3.

Definition 4 (a) A group G of order m is called R-sequenceable if its noniden-
tity elements can be listed in a sequence

91,925+ -+, 9m—1

such that
97192, 95103, - - - Gt aGm-1, Gm1 1

are all distinct.

(b) If, further, g1 = g2gm-1 = Gm-192, G is called R*-sequenceable.

The nonabelian group G of order pg where p, ¢ are primes with ¢ =1 (mod p)
is defined, using 7 such that P =1 (mod ¢), 7 #1 (mod g), as follows:

G ={(u,v) |ueZ/pZ,vel/qZ}
with multiplication defined by
(w,v){(z,y) = (u + z,vr® + y).
The following result was proved by Keedwell [3].

Proposition 6 The nonabelian group of order pq is R-sequenceable if p has 2 as a
primitive root.

This result can be extended, essentially by means of a modification of the direct
product theorem in [2].

Theorem 3 The nonabelian group of order pq is R-sequenceable.

Proof. In view of Proposition 6 we assume p > 5. The (additive) cyclic group Z/pZ
is R*-sequenceable [2]; let g,..., gp—1 be an R*-sequencing with g, = g2 + gp-1.

In order to list the nonidentity elements of G, we introduce px ¢ matrices A and B,
defined over Z/pZ and Z/qZ, respectively. Entries aj; and by; are left blank; group
elements are given as (ay;, b;;), and are sequenced by reading column-by-column from
A and B. ’

Letaj=gifori=1,2<j<(¢+1)/2,andfori=2,1<j < (¢g+1)/2. For
i=12and j> (¢+1)/2,let a;; =0. Fori >2and 1 < j <gq, let a;; = g;—y. The
definition of B uses the nonzero element ¢ = —r9179%-2792 of Z/qZ; all arithmetic
is in Z/qZ. For j > 2, let by; = bs; = (j — 1) - c. Complete row 3 by letting
bsi = 0, and define row 2 by letting by; = —b3;, 1 < j < g Ford <i<p-1
(except as noted below), row 7 is the g-tuple (0, —1,¢ —2,...,2,1). The final row
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is (r¥,2r%, ..., (g —1)r*,0), where k = g,-1 — gp—» mod p. (A modification is needed
when ¢r%792 = —1, or equivalently, when g3 — g2 + gp—1 — gp—2 = 0 mod p. In this
case, row 4 of B is defined by the g-tuple (0,1,2,...,q — 1), affecting rows 4 and 5
of B’ below.)

To verify that (a;;, b;;) form the desired R-sequencing of G, one must study the
matrices A’ and B’ with af; and b}; blank and other entries defined by

(aIH y ) — { (ai—l,jy bi—-l,j):l(aija bij) le > 1, )
LA (ap,j_l,bp,j_l) 1(a,-j,b,'j) ifi=1 and i>1,

together with (ay;bh;) = (apgbsq) " (az1ba1). Thus the (aj;, b;) list the products re-
quired by Definition 3.

The verification that the listed products are distinct is aided by the following
observations:

(i) The matrix A’ has a particularly simple form, namely,

— gl_gp—l e gl“gp—l gz.—gl v gz....gl
- Gp-1 0 e 0 0 [ 0
92— g1 92— 0 92— 01 91— Gp-1 91— Gp-1
3 — g2 g3—92 ' g3 — g2 '
9p—1 — Gp-2 Gp-1 — Gp—2 *°* 9p—1 — Gp—2

so that, from row 4 onwards, it suffices to verify that the entries in each row of B’
are distinct.

(ii) ¢ = 2hp+1 and r? = 1, so that none of 792 or 792791, p94=93 _ yr9—279r-3 can
be —1.

(iii) The analysis of row 1 and row 3 is made easy by observing the two equalities

c—rITI = ¢, c—rTI?=cr®T9 g

(iv) The last row of B’ is given by (r*,3r% ... (g—2)r*,0,27% 4r% ... (¢—1)r*).
(v) If ¢r93792 = —1, then row 4 of B’ as “generally” defined consists entirely of
zeros. The modification noted above corrects this difficulty so that the affected rows
of B’ have distinct entries. 8

Remark: It should be pointed out that the R-sequencing of the previous result is,
in fact, an R*-sequencing because (g1,0) = (g2,0)(gp-1,0) = (gp—1,0)(g2, 0).

It is useful to have an example for the construction of the R-sequencing in The-
orem 3. We include the smallest example for which the prime p does not have 2 as
a primitive root.

Example. The nonabelian group G of order 203 has p = 7 and ¢ = 29. We use the
R*-sequencing 3, 2, 5, 6, 4, 1 of Z/7Z, so that A is as follows:

333333333333300000000000000
333333333333300000000000000
222222222222222222222222222
5565565556555565565555555555

66666666666666666666666
44444444444444444444444
111 1

-3
33
22
55
6 6
44
11 1111111111111111111

55565
6666
4444
1111
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Use r = 7 (which implies ¢ = 6). Since g3 — g + gp—1 — gp—2 = 0 mod 7, we modify
row 4 and obtain the following matrix as B:

— 06 12 18 24 01 07 13 19 25 02 08 14 20 26 03 09 15 21 27 04 10 16 22 28 05 11 17 23
0 23 17 11 05 28 22 16 10 04 27 21 15 09 03 26 20 14 08 02 25 19 13 07 01 24 18 12 06
0 0612 18 24 01 07 13 19 25 02 08 14 20 26 03 09 15 21 27 04 10 16 22 28 05 11 17 23
0 010203 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
0 282726 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
23 17 11 05 28 22 16 10 04 27 21 15 09 03 26 20 14 08 02 25 19 13 07 01 24 18 12 06 0

By the definitions of the elements (aj;, bj;) we have A’ as follows:

-2222222222222266666666666666
00000000000000000000000000
6666666666622222222222222
3333333333333333333333333
1111111111111111111111111
55565555555555555555555555
4444444444444444444444444

Ut = O N
Ot WO O
U= OO

and, finally, B’ is as follows:

— 102001 1121 02 12 2203 13 23 04 14 24 20 02 13 24 06 17 28 10 21 03 14 25 07 18
0 17 05 22 10 27 15 03 20 08 25 13 01 18 06 23 11 28 16 04 21 09 26 14 02 19 07 24 12
0 1122 04 15 26 08 19 01 12 23 05 16 27 09 05 15 25 06 16 26 07 17 27 08 18 28 09 19
0 0204 06 08 10 12 14 16 18 20 22 24 26 28 01 03 05 07 09 11 13 15 17 19 21 23 25 27
0 21130526 18 10 02 23 15 07 28 20 12 04 25 17 09 01 22 14 06 27 19 11 03 24 16 08
0 1501 16 02 17 03 18 04 19 05 20 06 21 07 22 08 23 09 24 10 25 11 26 12 27 13 28 16
231128 16 04 21 09 26 14 02 19 07 24 12 0 17 05 22 10 27 15 03 20 08 25 13 01 18 06

The listing of the elements (a;;, b;;) by columns gives the indicated R*-sequencing
of G, as can be checked by examining the (aj;, ;).
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