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Abstract 

In this paper we construct a family of Hadamard 2-groups whose derived 
lengths are arbitrarily large. 

1. Introduction 

Let G be a group of order 4n with a central involution e*. If there exists a 
transversal D of G with respect to the subgroup (e*) generated by e* such that 
\D n Da\ = n for every element a of G apart from the identity e and e*, then 
we call D and G an Hadamard subset and an Hadamard group with respect to e* 
respectively. 

If an Hadamard group G of order 4n exists, then we can construct an Hadamard 
matrix of order 2n whose automorphism group contains a regular subgroup isomor­
phic to G. (See [2].) 

A result of Ito[3] shows that every generalized quaternion group is an Hadamard 
group. This implies that for a given positive integer c, there is an example of an 
Hadamard group with nilpotency class c. It was previously unknown whether the 
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analogue for the derived length is also true. (An example of an Hadamard 2-group 
of derived length 3 was given in [1].) 

The aim of this paper is to give a family of examples of Hadamard 2-groups 
with arbitrarily large derived lengths. The main result of this note may be stated 
as follows: 

Theorem 1.1. Suppose that Go is an Hadamard abelian 2-group with respect to 
a square involution and Go x (e2) is Hadamard with respect to e2' For each positive 
integer n let Gn be the wreath product of Gn - I by a cyclic group of order 2. Then 
G n is an Hadamard group with derived length n + 1. 

2. Extensions of Hadamard groups by involutions 

The following lemma establishes the Hadamard property of certain kinds of 
extensions of an Hadamard group. 

Lemma 2.1. Let G be an Hadamard group with an Hadamard subset D with 
respect to e*, and let G := G ~ (t) be an extension of G by the cyclic group (t) of 
order 2. Suppose there exists an element x in G with x 2 = e* such that t commutes 
with x. Then the extension G is also an Hadamard group with the Hadamard subset 
D := Dx U Dt with respect to the same involution e* . 

Proof. Since IDI I~I, we need to show that ID n Dyl IDI for each element y in 
G other than e and e*. 

(i) Suppose that y belongs to G as embedded in G. Since y is different from e 
and e*, so is yt by the hypothesis. It easily follows that Dy = Dxy U Dytt; so 
ID n Dyl IDx n Dxyl + ID n Dytl = IDI since Dx and D are Hadamard subsets 
of G with respect to e*. 

(ii) For the other case, y is an element of the form zt for some z in G. Then 
Dy = DxztUDzt, and so IDnDyl = IDnDxzl+IDxnDztl. Note that t commutes 
with e*. It follows that xz = e if and only if X-I zt e*, and xz = e* if and only 
if x-Izt e. So if xz E (e*) then either ID n Dxzl 0 and IDx n Dztl IDI, or 

ID n Dxzl IDI and IDx n Dztl = 0; otherwise, ID n Dxzl = IDx n Dztl = I~I. 
Therefore ID n DYI = IDI. This completes the proof of Lemma 2.l. 

We then have the following corollary as an immediate consequence of Lemma 
2.1. 

Corollary 2.2. Suppose that G is an Hadamard group with respect to e*. If G 
contains an element x with x 2 = e* then G x C2 is Hadamard. 

We also need the following result: 

Lemma 2.3. Suppose G and H x C2 are Hadamard with respect to involutions 
ei E G and e2' respectively, where C2 = (e2)' Then G x H is Hadamard with 
respect to ei. 

Proof. By Proposition 3 of [2], G x (H x (e2))/ (eie2) is Hadamard with respect to 
ei (eie2)' The homomorphism of G x H x (e2) defined by (g, h, (e2Y) H (g(ei)€, h) 
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(E = 0 or 1) induces an isomorphism of G x (H x (e2))/(eie2) onto G x H. So the 
result follows. 

Corollary 2.4. Suppose Hand H x C2 are Hadamard abelian groups with respect 
to a square involution ei and an involution e2' respectively, where C2 = (e2)' Then 
H x H x· .. x H is Hadamard with respect to a square involution (x2, x2, . .. ,x2) = 
(ei, ... ,ei) for some x E H. 

Proof. By Lemma 2.3, H x H x· .. x H is Hadamard with respect to (ei, e, e, .. . ,e), 
where e is the identity. Define an automorphism (J' of H x ... x H by 

It is easy to check in general that the isomorphic image of an Hadamard subset 
with respect to e* is an Hadamard subset with respect to the image of e*. Since 
(ei, e, e, ... ,e)O" = (ei, ei, ... ,ei), we have the desired result. 

Remark There are many Hadamard abelian 2-groups satisfying the hypotheses of 
the above Corollary and so those of Theorem 1.1. For example, C4 , C4 x C2 , C4 X 

C2 X C2 , C4 X C2 X ... X C2 are such groups. 

We now return to the proof of Theorem 1.1. Each element 9 of Gn = Gn - I l C2 

is of the form (an-I, bn-I)t~ where an-I, bn- I E Gn- I and E = 0 or 1. We also 
note that tn is an automorphism of Gn- I x Gn- I exchanging the components, that 
is (an-I, bn_l)tn = (bn- I , an-d. 

From its construction, Gn is expressed in terms of Gi's (i < n) and its automor­
phisms. For example, G3 is expressed as follows. 

G3 =G2 l C2 

=(G2 x G2) ~ (t3) 

=[((G I x G I ) ~ (t2)) x ((G I x Gd ~ (t2))] ~ (t3) 

= {{[((Go x Go) ~ (h)) x ((Go x Go) ~ (h))] ~ (t2)} x 

{[((Go x Go) ~ (tl)) x ((Go x Go) ~ (h))] ~ (t2)}} ~ (t3) 

=(GO)8 ~ (C2 )4 ~ (C2 )2 ~ C2 . 

So we can have that 

We also know from Corollary 2.4 that (Go)2n is Hadamard with respect to a square 
involution (x2, x2 , ... ,x2). Each ti acts on (Go) 2n, switching the components of 
elements of this group. So each ti has order 2 and commutes with (x, x, . .. ,x). By 
repeated applications of Lemma 2.1, it is now clear that Gn is Hadamard. 

The following lemma completes the proof of Theorem 1.1. 
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Lemma 2.5. Gn has derived length n + l. 
Proof. Since (g, e)tn (g, e)-I = (g-l, g) for g E G n - I , the derived subgroup G~ con­
tains all the elements of the type (g, g-I) for g E G n - I . The projection (g, g-I) H 
(g, e) implies that Gn - I is a subgroup of a quotient of G~. So the derived length of 
G~ is at least that of Gn - I . But G~ is contained in Gn - I x Gn - I . Hence G~ and 
Gn - I have the same derived length. By induction the result follows. 

ACKNOWLEDGMENTS 

We would like to thank the referee for his helpful comments. 

REFERENCES 

[1] M. Fukui, Directly decomposable Hadamard groups and an example of an 
Hadamard 2-group with derived length 3, Master's thesis, Meijo University, 1996. 

[2] N. Ito, On Hadamard groups, J. of Algebra, 168 (1994) 981-987. 
[3] N. Ito, On Hadamard groups, III, to appear in Kyushu J. of Math. 

(Received 2/4/97) 

86 


