Circumferences of 3-connected Tough Graphs with Large Degree Sums

He Donggqi
Department of Biomathematics & Biostatistics
Beijing Medical University
Beijing 100083 , P.R.China

Abstract
Let G be a 3-connected tough graph of order n with circumference ¢(G), independence
number a(G) and vertex connectivity k(G) , such that d(x)+d(y)+ d(z)*+d(w)=s for any
independent set { x, y, z, w} of vertices. In [7] we have proved : when s2n+c(G)/2, every
longest cycle of G is a dominating cycle and ¢(G) 2min{n , n+s/4-a(G) }. This paper
improves the results by showing that under the same conditions ¢(G)zmin{n, n+s/4-a(G)
+1}. Furthermore when s>(3n-1)/2+ (G), G is hamiltonian .

1 Terminology

All graphs are finite simple graphs. The reader is referred to [3] for undefined terminology.
Let G=(V, E) be a graph of order n. For AcV, we use G[A] to denote the subgraph induced
by A, while G-A will be used to denote the graph G[V(G)-A]. For a subgraph H of G, G-
H=G-V(H). x(G), a(G), 8(G) and ¢(G) will denote the vertex connectivity , independence
number, minimum degree and circumference of G respectively. The number of
components of G will be denoted by o(G) . We call G a t-tough graph if |Si>t-©(G-S) for
any ScV such that ®(G-S)>1. The toughness of G, denoted by t(G) , is the maximum value
of t for which G is t-tough (t(Kn)=o0 for all n>1). If t(G) = 1 we call G a tough graph . For
ueV, we denote the neighborhood of u by N(u), and d(u)= [N(u)l. A cycle C of G is called
a dominating cycle if every edge of G has at least one of'its vertices on C. G is called almost
hamiltonian if every longest cycle of G is a dominating cycle. For a cycle C, we denote by

C the cycle with a fixed cyclic orientation. If u, ve V(C), then uC v denotes consecutive
vertices on C from u to v in the orientation specified by C . The same vertices , in reverse
orientation , are given by vC u. We use u” to denote the successor of vertex uon C and u’

the predecessor of uon €', and u™=(u")", u=(u) . If AcV(C), then A"={v|veA]},
A={v|veA}, and A"=(A")" . For an integer r, 1<r< a(G) , define ,(G)=min{ ¥, d(u)|
ScV(G) is an independent set of vertices of size r} and p(G)=max {d(v)| ve V-V(C") , C"is
a longest cycle of G} .

2 Main Results
In [7], we have obtained the following results .
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Theorem 1. Let G be a 3-connected tough graph of order n such that 5,(G) zn+c(G)/2 .
Then G is almost hamiltonian .

Theorem 2. Let G be a graph of order n such that 8(G)23 and 6,(G)zn+c(G)/2 . Let G
contain a longest cycle C which is a dominating cycle . If voe V-V(C) , A=N(v,), then both
(V-V(C))UA" and (V-V(C))UA" are independent sets of vertices .

Theorem 3. Let G be a 3-connected tough graph of order n such that ¢,(G)=s>n+c(G)/2.
Then ¢(G)zmin{n , n+s/4-a(G)}; furthermore when ¢(G)<n , there exists a longest cycle C
of G and v,e V-V(C) such that p(G)=d(v,)2c,(G)/4 .

This paper improves the above results by showing that :

Theorem 4. Let G be a 3-connected tough graph of order n such that &,(G)=s=n+c(G)/2.
Then G is hamiltonian or there exists a longest cycle C such that a(G)=|V-V(C)|+s/4 +1 .
Corollary S. Let G be a 3-connected tough graph of order n such that &,(G)=s2n+c(G)/2.
Then ¢(G)zmin{n , n+s/4-a(G)+1}.

Since a(G)<n/(t1(G)+1), 6,(G)and c(G) are all integers, Theorem 4 also implies the
following corollary .

Corollary 6. Let G be a 3-connected t-tough graph of order n such that 1(G) > 1 and
6,(G)zszn+ c(G)/2 . Then ¢(G)zmin{n, nt/(t+1)+s/4+1} ; furthermore when o, (G)>
n+(n-1)/2 , if ©(G)=5/3 or 8(G)2a(G)-1 , then G is hamiltonian .

Using the above results, we obtain another sufficient condition for hamiltonian cycles.
Theorem 7. Let G be a 3-connected tough graph of order n with vertex connectivity x(G)
such that ¢,(G)= (3n-1)/2+x(G) . Then G is hamiltonian .

Our proof of Theorem 7 also requires a number of well-known results as follows:
Lemma 8[1]. Let G be a graph of order n and S a vertex cut of G. Suppose some component
of G-S is complete and has vertex set B . If u and v are nonadjacent vertices in V-(SUB)
such that d(u)+d(v)=n-{B[+1, then G is hamiltonian if and only if G+uv is hamiltonian .
Lemma 9[6]. Let G be a graph of order n such that ¢,(G) =8(G) 2n/2>1. Then G is
hamiltonian .

Lemma 10[4]. Let G be a graph of order n with nonadjacent vertices u and v . If d(u) + d(v)
>n, then G is hamiltonian if and only if G+uv is hamiltonian .

Lemma 11[5]. Let G be such a graph that o(G)<k(G). Then G is hamiltonian .

Lemma 12[9]. For any graph G, x(G)<8(G).

3 The proofs
Preliminaries
Let G be a non-hamiltonian 3-connected tough graph of order n such that o,(G)=n+c¢(G)/2 ,

and C be a longest cycle of G with a fixed cyclic orientation C. Let v,eV-V(C) such that
d(vo) = i(G). By theorems 1 and 3 , C is a dominating cycle and d(v,)>c,(G)/4. Set A =

N (vp)={v,v,, ..., vi}(k2x(G)=3) such that viev,, C v,,, Setu=v,, w=v,,’, L=u,Cw; for
1<i<k (indices mod k). For 1<r< s<k , define

R,(u)={veu,CvJ|uv'eE}
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S,(u)={veu,Cv]uveE}
Ry(u)={veu,Cv]|uveE}
S,(u)={veu,Cv]uv'eE}
B(u, , u)=R,(u)IS, ()R, (u)US,(u,) .
The following propositions facilitate the proof of Theorem 4 .

Proposition 1. ANA™=ANA = ¢ .

Proof. Since C is a longest cycle , Proposition 1 is obviously true .

Proposition 2. If veu; C y with i<j and uveE then uv'¢E .

Proof . Suppose otherwise , then there exists a cycle u,C vu;C vv,v,C v'y, longer than
C, which is a contradiction . Hence Proposition 2 is true.

Proposition 3. For 1<r<s<k , d(u)+d(u)<B(y, , u)|<[V(C)| .

Proof . Since C is a longest cycle as well as a dominating cycle , by Proposition 2 we
have N(u)=R,"(u)UR,(u,), N(u)=S,(u)US," (u,), and R, (u)S,(u)=R,(u)S,(u) = ¢ .
Thus d(u)+d(u)=N(u)HN)R, )RS, (u)[HS; () =By, , u)l< [V(C)]
for 1<r<s<k . Hence Proposition 3 is true .

Proposition 4. A"mA™ # ¢ and if ue A"A™ then d(u)<d(v,) .

Proof . Suppose A"mA” = ¢ . Then ¢(G)23d(vy)230,(G)/423(n+c(G)/2)/4 | i.e.
¢(G)=6n/5>n. This contradiction shows that A'mA” # ¢ . If ue A*nA", then there exists a

longest cycle C', vou* C u'v,, such that ue V-V(C"). By the choice of C and v, , we have
d(ve)=d(u). Thus Proposition 4 is true.

Proposition 5. If ue A"'mA”, uveE and ve V(C), then {v'} (V-V(C))UA" is an
independent set of vertices .

Proof. By Proposition 2, {v"}\A" is an independent set of vertices . Suppose there
exists v'e V-V(C) such that v'v'eE .Clearly v, #v' ,otherwise there exists the cycle v'u®
Cwvu C vV longer than cycle C. And v'y, ¢E forany ie {1,2, ..., k}, otherwise when ueu”
Cv, thereis a cycle viv' Cuvgy, Cuv €y, v' longer than cycle C; when yev' Cu, there
isacycle v'v* € vvu"Cvu Cu, v' longer than cycle C. Similarly v' u,* ¢E for any ie {1,
2, ..., k}. This is to say ,no edge of G joins v' to the vertex in A*UA™" .Since C isa
dominating cycle, N(v')cV(C), and by Proposition 1, A"mA™ = ¢ . Thus d(v)<|V(C)/-
2d(v,) . Furthermore ,since k23 , there exists u, e A* such that {v,, v',u,u,} is an
independent set of vertices , and d(u,,)=min{d(w)| je {1,2, ..., k}, uu}. By Proposition 3,
d(u,,)<IV(C)|/2 . By Proposition 4 , d(u)<d(v,) . Hence we have
n+¢(G)/2<6,(G)< d(v,)+d(v')+d(u)+d(u,,) <|V(C)|+c(G)/2<n-2+c(G)/2, a contradiction,
which shows that v'v"¢E for any v'e V-V(C), i.e.{v'}U( V-V(C)) is an independent set of

vertices. Then by Theorem 2, {v'}U(V-V(C))UA” is an independent set of vertices. Thus
Proposition 5 is true .
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Proposition 6. If yeu;"Cw; , zev,,, C v, and u;, u'#w, such that yze E , u,C w;cN(w))
and u’ C w; cN(u) for some ie {1, 2, ..., k}, then {z'}U(V-V(C))UA" is an independent
set of vertices .

Proof . When ze A, Proposition 6 is true by Theorem 2. When z¢ A, suppose u;z"€E for

some je{1,2,...k}. If yez" Cw;, then there exists a cycle uz" C vyv,v,,, Czy Cwy Cuy,

longer than C . If yiev;,, €z, then the cycle uz" Cvyv,v; Cy'u,C yzCy, is longer than C. In
either case we reach a contradiction. Hence uz'¢E forall je {1, 2, ..., k}, i.e. {z'}UA  isan
independent set of vertices. As in the proof of Proposition 5, we have {z"}U(V-V(C)) is an
independent set of vertices. And by Theorem 2, {Z }U(V-V(C)) WA" is an independent set
of vertices. Thus Proposition 6 is true.

Proposition 7. If vey,C w, and uveE-E(C) for some ie {1, 2, ..., k} , then {v'}u (V-
V(C))U(A™-{u;}) is an independent set of vertices .

Proof . By Proposition 2, {v'}\U(A™{u;}) is an independent set of vertices . As in the
proof of Proposition 5, we have {v}u(V-V(C)) is an independent set of vertices . By
Theorem 2, (V-V(C))U(A™-{u;}) is an independent set of vertices. Hence {v }u(V-V(C))
U(A™-{u;}) is an independent set of vertices . Thus Proposition 7 is true .

Proof of Theorem 4

When n<11 , it is easy to verify Theorem 4 . Hence we may assume that n>12 .

If G is hamiltonian, there is nothing to prove. Otherwise, choose C, v, and A as above.
By theorems 1,2 and 3, a(G)=[V-V(C)|+A'|=|V-V(C)+d(v,) and d(vy)zo,(G)/4. If d(vy)=
64(G)/4+1 then a(G)2|V-V(C)[+c,(G)/4+1 so that Theorem 4 holds .Thus we may assume
that 6,(G)/4<d(vy)<(c,(G)+3)/4 . Suppose a(G)<[V-V(C)|+ |A™].

Claim 1. Ifue A"mA’ then N(W)cN(v,) .

Otherwise, suppose there exists ve V(C) such that uveE and ve N(v,) . Then by
Proposition 3, {v'}U(V-V(C))UA" is an independent set of vertices ,so that | V-(C)[+HA’|
< a(QG), a contradiction.

Claim 2. There exist vertices u;e A" and w;e A" with i#j such that uw,eE .

Since G is a tough graph, G-A has at most k components , one of which has vertex set
{v,}. Hence there exist integers i, je {1, 2, ..., k} with iz such that some vertex in L, is
joined to some vertex in L, by either an edge e or a path of length 2 with its internal vertex
in V-V(C)-{v,}. Since the arguments for these two cases are completely analogous , we
will assume that the first case applies . If e joins a vertex in A to a vertex in A’, the claim is
established. Otherwise, let e=yz, where yeL,; and y=u;, w;. Suppose uyw;€E. Then by
Proposition 7, {w; }W(V-V(C))(A'-{u;}) is an independent set of vertices. Thus uw, eE.
By repeating the above argument we conclude that each vertex in L-{u;,w,}is adjacent to u;.
Similarly, each vertex in L;-{u;, w;} is adjacent to w;. Now by Proposition 6, {z"}(V-
V(C) )UA” is an independent set of vertices so that a(G)> [V-V(C)|+|A"| .This
contradiction shows that uw;€E . By Theorem 2, {w;}(V-V(C)) is an independent set of
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vertices. Since a(G)<|V-V(C)[+ |A"], w; must be adjacent to some vertex in A™- -{y;} . Thus
claim 2 holds.

Claim 3. There exist vertices X, , X, , ;€ A"NA" such that N(x,)=N(x,)=N(v,) .

Since n-12|V(C)[23(d(vo)- A mAD+2|A'NAT, | A'MAT23d(v,)-|V(C)| . Note that
n212.When d(v,)=c,(G)/4 , we have | A"nA23(n+c(G)/2)/4-c(G)=(n+5)/8 ,s0 that
[A'TmAT23 . Let {x,,X,, X} A""A" Then {v,,X,, X, , X;} is an independent set ,and
max{d(x,), d(x,), d(x;)} <d(v,) by Claim 1. Suppose d(x;)<d(v,) for some i€ {1,2,3} . Then
we have o,(G)<d(vo)+d(x,)+d(x,)+d(x;)<4d(v,)=0,(G), a contradiction. Hence d(x,) =d(x,)
=d(x3)=d(v,). By Claim 1, N(x,)=N(x,)=N(v,). When d(v,)=(c,(G)+1)/4 ,we have | ATMAT
23 too. Let {x, , X, , X;}€ A"MA” such that d(x;)<d(x,)<d(x,)<d(v,) . Suppose d(x,)<d(vy)-
1. Then we have 6,(G)<d(v)+d(x,)+d(x,)+d(x3)<2(c (G)+ 14+ 2((0,(G)+1)/4-1 )=c,(G)-
1, a contradiction, which shows that d(x,)=d(x,)=d(v,) .Then by Claim 1, N(x,) =N(x,)
=N(v). Similarly when d(vo)=(c,(G)+2)/4 or d(vo)=(c,(G)+3)/4, there exist x, , Xy, X3 €
A'NA’ such that N(x,)=N(x,)=N(v,) . Thus Claim 3 holds .

By Claim 3 , without loss of generality , let u, , u,e A'mA” with r#1 such that N(u,) =
N(u,) =N(v). Let j be the maximum index such that uw,eE for some i with i#j . By
Theorem 2, j#1, 1. Since uyv,, , uv,,, €k, by Proposition 2 we have 1<r<i<j . Now we
consider y; .

Claim 4. The vertex v is not adjacent to any vertex in V(CO)-(LiwA) .

Suppose uyeE, where yeL, and t>j. By theorems 1 and 2, {w,}\(V-V(C)) is an
independent set of vertices , and y, w, ¢ A" .Thus w, must be adjacent to some vertex in A",
By the choice of the index j we conclude that uw,eE and y#u, , w, . But then by Proposition
7, {wFUA™-{u})V(V-V(C)) is an independent set of vertices . Thus uw, €E. By
repeating the above argument we have N(u)oL-{u} . Similarly N(w)oL,-{w,}. But then
by Proposition 6 , {u,"} (V-V(C))UA" is an independent set of vertices ,a contradiction .
Hence we suppose uy e E, where yeL, and j>t . Since N(u,)=A, u,v,,,€E . By Proposition 2,
y:#w Furthermore {y”}(V-V(C)) is an independent set of vertices . To see this , suppose
y'Vo'€E , where vy'eV-V(C) . Since LNA=( | v,'#v, . If v, 'u,eE , where either p>j or p<t |
then there exists a cycle v,'y e ViVgY, c wy c u,v,' longer than cycle C . If v, 'u,€E where
t<p<j , then there exists another cycle v,'y"C VpuI C Yy C Vi VgV, C upvo' longer than cycle C
too. Thus vy' is not adjacent to any vertex in A*-{u} . Similarly, v,' is not adjacent to any
vertex in A™-{u"} . By Proposition 1 , A*"nA""= ¢ By theorems 1,2 and 3 , v'u;, vy'w; ¢E,
and v, is also not adjacent to any vertex in V-V(C), so that d(v,' )<IV(C)J- 2(d(vo) 1)-2 =
[V(C)I-2d(v,) . Let d(u,)=min{d(w,)|2<i<k}. Then {v,, v, ,u,,u,}isan independent set of
vertices .Thus nt+¢(G)/2<6,(G)< d(vy)+d(v,)+d(u )+d(u,) <[V(C)[+V(C)/2<n-1+¢(G)/2 ,a
contradiction . Hence y*vy'¢E for all v,'e V-V(C), i.e.{y" }U(V-V(C)) is an independent set
of vertices .But since a(G)<[V-V(C)[+]A"| , y* must be adjacent to some vertex u,eA” .
Since uy€E , by Proposition 2, it must be the case that t<s<j. Now we apply the above
argument to y”, y™', etc. It follows that there exists an integer b such that t<b<j and
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u,w,eE . But since u)v,,,€E , we reach a contradiction with Proposition 3 . Thus Claim 4
holds.

Claim 5. There exists a vertex u,e A"MA” with ai, j , such that uv,., k.

Suppose otherwise. Consider any vertex v,,,, € A with m#j . If u, g A"mA", by Claim 4 ,
WV s UV, €E . Similarly , if u,e A'mA, thenyy, ., , uv,,, 2E . Furthermore since
uw;eE , by Proposition 2 we have uyv,,,E . Thus d(u)<[V(C)|-2d(v,) . Let d(u,,)= min
{ d(w)lweA'nA", i=1, j}. By propositions 2 and 3 , d(u,) <[V(C)[/2 . Now {v,, u,, U, u,)
is an independent set of vertices , we have n+ C(G)/ZSGA(G)Sd(VO)de(u,)+d(uj)+d(um)< -1+
¢(G)/2 , a contradiction . Thus there exists a vertex u,e A’NA” with a#j , such that
uv,, €E. Since uyw,eE, by Theorem 2, ;¢ A’NA”and hence i»a . Thus Claim 5 holds .

Claim 6. u,v,¢E .

Suppose otherwise . Then when i<a<j , we have u,v,, uw;€E , contradicting
Proposition 2.When a<i or a>j then the cycle uyv,., C vyu, C v;,,v,v;C uw, C u, is longer than
cycle C ,which is a contradiction. Thus Claim 6 holds .

Claim 7. If i<a<j then u,v;,, ¢E . If i>a or a>] then u,v;2E .

Suppose otherwise . Then when i<a<j ,we have u,v,.,, uw;eE , a contradiction with

LV ant

longer than cycle C, a contradiction . Thus Claim 7 holds .

Note that {v,,u,,u,,u,} is an independent set of vertices . By claims 1 and 7, we have
d(u)<d(u)=d(u)=d(ve)<(c,(G)+3)/4 , so that o,(G)<d(v,)+d(u ) *+d(u) +d(u,) < d(u,) +
3 (04(G) +3)/4 . Hence d(u,)2(c,(G)+3)/4-32d(v,)-3 , so that [N(vy)-N(u,)|<3 . By claims 6
and 7 , we have 2<|N(vy)-N(u,)I<3 . In the following arguments let C(s) denote the cycle
UV, CVSUQC_'VJ»HVOVi C_'usvj C*Tu‘wj C‘uJ with length longer than cycle C , where s=1 orr .
We distinguish different cases below .

Case 1. I<a<iora>j.

In this case , N(vo)-N(u)={v;, v;}u{x} , where xe{d,v,, v} . If j<a<k , then when
x#V, , G contains cycle C(r) ; when x#v, , G contains cycle C(1) . Similarly, if i>a>1, G
also contains cycle either C(r) or C(1) .

Case 2. i<a<j .

In this case N(vo)-N(u)={v;, v, }u{x} , where xe {¢, v,, v} . But then when x=zv, , G

contains cycle u,v, Cu,v,Cuv, C vy, vev,,, C wu, C u, with length longer than cycle C, and

Proposition 2. When i>a or a>j , u,v;eE , then the cycle uyv,,, Cvvev,,, C uv,Cuw; Cy, is

when x#v; G contains cycle u,v, C‘Vj,,vovrf’u}vi (_Turvaéuiwj C u, longer than cycle C too.
This final contradiction shows that the hypothesis a.(G)<|V-V(C)|+A"| is not true . Thus
we have a(G)2|V-V(C)HA'|+12V-V(C)|+0c,(G)/4+1 , i.e. Theorem 4 holds .

Proof of Theorem 7
Suppose there exists a non-hamiltonian 3-connected tough graph H of order n such that
o,(H)2(3n-1)/2+x(H). Let G be such a graph with a maximum number of edges .Note that
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04(G)2 n+n/2-1/2+ k(G)2n+ 0/2-1/2+3=n+(n+5)/2> n+c(G)/2 . By Corollary 5, G is almost
hamiltonian and ¢(G) =2 min{n,n+g,(G)/4+1-a(G)}.

If 0(G)<5,(G)/4+1 , then 6,(G)/4+1-0(G) 20, so that n+o,(G)/4+1-0(G) =n. Hence,
¢(G)=n, so that G is hamiltonian, which is a contradiction . We assume ,therefore, that
a(G)>0,(G)/4+1. But 0,(G)/4+12((3n-1)/2+k(G))/4+1=3n+2k(G)+7)/8. By Lemma 11 ,
a(G)zk(G)+1 .

Case 1. a(G)=x(G)+1 . Since k(G)+1>(3n+2x(G)+7)/8 , we have k(G) >n/2-1/6 But n/2-
1/6>(n-1)/2 and by Lemma 12, 8(G)=c,(G)2k(G)>(n-1)/2.Hence k(G) >n/2.This implies
that 8(G) 2n/2.By Lemma 9 , G is hamiltonian , which is a contradiction .

Case 2. a(G)=k(G)+2. Since k(G)+2>(3n+2x(G)+7)/8, we have 8x(G)+16>3n+2x(G)+7,
i.e. 6x(G)>3n-9, i.e. «(G)>(n-3)/2.Since G is non-hamiltonian, Lemma 9 implies that n/2>
8(G)=0,(G)2k(G)>(n-3)/2 . But then n+c,(G)/4 +1- a(G)2n+(3n+2x(G)+7)/8-x(G)-2
=n+(3n-6x(G)+7)/8 -2. We have two cases to consider.

Case 2.1. n=1 (mod 2). Then n/2>8(G)= c,(G)=> k(G) >(n-3)/2,which implies that §(G) =
x(G)=(n-1)/2.But then n+(3n-6x(G)+7)/8 -2=n-3/4,s0 that ¢(G) = min{n,n+c,(G)/4+1-
o(G)} 2n-3/4. It follows that ¢(G) =n, implying that G is hamiltonian, which is a
contradiction.

Case 2.2. n=0 (mod 2). Then n/2>6(G)= ¢,(G)2 «(G) > (n-3)/2, i.e. n/2-12 §(G)= 6 (G)=
K(G) 2n/2-1,ie. 8(G) = k(G)=n/2-1. But then n+(3n-6x(G)+7)/8-2=n-3/8, so that ¢(G) =
min{n,n+c,(G)/4+1-0(G)} 2n-3/8.1t follows that ¢(G)=n, implying that G is

hamiltonian ,which is a contradiction.

Case 3. o(G) =x(G)+3 .Since x(G)+3>(3n+2k(G)+7)/8 , we have k(G) > n/2-17/6 . Hence
a(G) > (3n +7)/8+(n/2-17/6)/4 = n/2+1/6 > n/2. Let A be any independent set of G of size at
least n/2+1and let A=V(G)-A. Then (G- A") =|A>n/2>|A’|, which contradicts the fact
that G is tough.

Case 4. a(G)zx(G)+4 . Let T be an independent set of vertices such that |T|=o(G) , S be a
vertex cut such that [S|=k(G) and let G, , G, , ..., G, be the components of G-S . Choose w ,
w,€T such that d(x)zmax {d(w,), d(w,)} for all xe T-{w, , w,}. Consider any pair v, , v, of
distinct vertices in T-{w, , w,}. Since {v,,v,, w, ,w,} is an independent set of vertices in G,
we have 2(d(v,)+d(v,))2d(v,+d(v,)+d(w,)*+d(w,)=25,(G) 2(3n-1)/2+k(G) . Hence
d(v))+d(v,)2(3n-1)/4+x(G)/2 . Since, by the inclusion-exclusion principle,

NV ONN(V,)[=d(v)+d(vy)-IN(v ) N(v,)| and [N(v YUN(v,)| € n-o(G) , it follows that
[NV )INN(v,)2(3n-1)/4+x(G)/2-n+o( G)=a(G)-0/4-1/4+k(G)/2>(B3n+2k (G)+7)/8+k(G)/2-
(n+1)/4=(n+6x(G)+5)/8>k(G). (To see that (n+61(G)+5)/8>k(G), suppose, to the contrary
that (n+6x(G)+5)/8<k(G). Then n+6k(G)+5<8x(G), so that (n+5)/2<x(G)<a(G)-4. Hence
o(G) 2(n+5)/2+4 which, as before, contradicts the fact that G is tough.) It follows that any
pair of distinct vertices in T-{w, , w,} cannot be in different components of G-S. Assume,
without loss of generality , that T-{w, , w,} <SUV(G,) . Set B=V-(SUV(G,)) . We now
prove that G[B] is complete. Suppose otherwise. Let x,, X,&B such that x,#x, and x,x,¢E .
Recall that a(G)2k(G)+4 , so that [TAV(G)|22 . Assume {y, , ¥,}<TNV(G,) with y,=y, .
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Then {y,, ¥, X, , X,} 1s an independent set of vertices and we have (3n-1)/2 +x(G) <6,(G)
< d(y (o) +d(x ) +d(x)<2(IV(G)HK(G)-a(G)+2)+2([Bl+k(G)-2)=2(n-o(G)+x(G) ),
since n=[V(G)|HB| +x(G) . But then o(G)<(n+2k(G)+1)/4 < (3n+2x(G)+7)/8 < a (G).
which is a contradiction .(If (n+2x(G)+1)/4 2 (3n+2k(G)+7)/8, then one can show that
oG)= (n+ 5)/4+4, which, as before, would contradict the toughness of the graph.) This
contradiction shows that G[B] is complete. Since T is an independent set of vertices, it
follows that [T B|<1 and [TNV(G,)|=3. Without loss of generality assume that {y, ,y,,
y53TNV(G,)) . Let i, je {1, 2, 3} such that i#]. If d(y,)+d(y;) Zn, then by lemma 10, the
graph G+y, y; is hamiltonian if and only if G is hamiltonian. By definition, G+y, y; is also a
3-connected tough graph of order n with o,(G+y, y;)2 6,(G ). Recalling that o( Gty y-S)=
o( G-S)>1, we have k(G+y, y)=x(G) =S| so that 6,(G+ y, y)2(3n-1)/2+ k(G+y, v, ). By
our choice of G, G+y, y; is hamiltonian. But then G is also hamiltonian, which is a
contradiction.We conclude that d(y;)+d(y;)<n-1 foralli,je{l, 2, 3}with i#j . Assume,
without loss of generality , that d(y,)=min{d(y,), d(y,), d(y,)}. Then d(y;)<(n-1)/2. Let
veB. Then {y,, y,, ¥:, v} is an independent set of vertices, so that d(y,)+d(y,)2c,(G)-
d(y,)-d(v)2(3n-1)2+x(G)-d(y)-(|B|+k(G)-1)=n-|B|+ 1+ (n-1)/2-d(y,)2n-|B/+1. By Lemma
8, G is hamiltonian if and only if G+y,y, is hamiltonian . But now by the choice of G,
G+y,v, is hamiltonian .But then G is also hamiltonian . This final contradiction completes
the proof of Theorem 7 .
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