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ABSTRACT. An F-graph is a graph G whose center C'(() contains at least
two nodes, and the distance between any two nodes of C(G) equals the radius
of G. In this paper we study properties of these graphs, and describe some
ways of constructing them.

INTRODUCTION

One of the problems frequently studied in the application of graphs is the prob-
lem of facility location in central nodes. Some emergency facilities located in the
same region can interfere with others when responding to a particular emergency.
As follows from the definition, the central nodes of F-graphs are separated as much
as possible to minimize the interference between corresponding facilities ([3],(2]).

All the terminology as well as notation except for that given here is taken from
[1]. By a graph we will understand a finite, undirected, connected (if not stated
otherwise) graph without loops or multiple edges. The set of nodes of a graph
G is denoted by V(G), and the set of edges by E(G). The distance between
nodes z and y of a graph G, denoted by dg(z,y), is the least number of edges
in an r — y path in G. The eccentricity eg(z) is maz{dg(z,w)} for all w €
V(G). A node v for which eg(z) = da(z,v) is called an eccentric node for z.
The radius r(G) and diameter d(G) are the minimum and maximum eccentricities,
respectively. If G is a disconnected graph, then dg(z,y) = oo if there is no path
between nodes x and y in G and (G) = d(G) = oco. The neighborhood of a node
x € V(@) is denoted by Ng(z). The distance between a node x € V(@) and a
nonempty subset J of V(G) is the minimum of the distances dg(z,y), for every
y € J. The distance dg(J,K) between two nonempty subsets J, K of V(G) is
the minimum of dg(z,y), where z € J, y € K.

The center of a graph G, denoted by C(G), consists of the nodes of minimum
eccentricity. A node z € C(G) is a central node of G.

Let F={G | |C(G)| >2; =y € C(Q), = #y —+ da(z,y) = r(G)}. A graph
G € F will be called an F-graph. Obviously, every complete graph with at least
two nodes is an F-graph with radius one. It is also the only selfcentric graph which
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is an F-graph. Thus we will consider only F-graphs with radius greater than or
equal to two.

I paper [3] the notion of F-graph is introduced and some results are given on
the existence of such graphs with prescribed radius and diameter. Also it is shown
that any graph ¢ can be embedded as an induced subgraph in a supergraph H ¢ F
with d(H) = 4, and |V(H)| = [V(G)| + 5.

In this paper we generalize some of the results of [3] and introduce some new
results. Given an F-graph G with at least three central nodes, we show that the
reduction G — ¢ for every central node x of G is also an F -graph. We give a
necessary and sufficient condition for a graph @ to be an F-graph, and introduce
some constructions of F-graphs.

1. PROPERTIES OF F-GRAPHS.

Lemma 1.1. Let G be an F-graph with r(G) > 2 and z be an arbitrary cen-
tral node of G. Then there is at least one node q € V(G) — C(&F) such that
dalz,q) = r(G).

Proof. Suppose that dg(z,s) < r(G) — 1 for every s € V(G) — C(G). Since
z € C(G), the neighborhood of z in G is nonempty and the eccentricity of any
node from Ng(z) is less than or equal to r(¢), which is a contradiction.

Corollary 1.1. Let G be a graph with the radius r(G) > 2. If there is a central
node of G such that it has only one eccentric node, then G is not an F-graph.

As shown in [3], a central node of any F-graph G cannot be a cutnode. If
a central node x of an F-graph G was a cutnode, then there are at least two
components in & — x such that one of them contains a central node y different
from x and the second contains at least one node z different from z and y. Then
z lies on every y — 2 geodesic in G, which is a contradiction.

Theorem 1.1 (Reducibility). Let G be an F-graph with (@) > 3,
(G) = r > 2, and let © be a central node of G. Then the graph G — z is
an F-graph with the same radius r(G — z) = r(G) and the center of G — z is
C(G—1)=C(GQ) — {z}.

Proof. Since @ cannot be a cutnode of ¢, the graph G — z is connected. The

eccentricity of any node in G — z is greater than or equal to its eccentricity in G.

a) Suppose that y € C(G) — {z}. Then eg(y) = r(G). For any node ¢ € V(G),
q # z, the length of a y — ¢ geodesic P is less than or equal to r(G). Since
da(y,z) = r(G), P cannot contain the node z. Thus da(y,q) = dg-2(y, q). For
any central node y of G there are at least two nodes in G with distance r(G)
from y. (If |C(G)| > 2 then these two nodes are from C(G) and if IC(G)] =2
then the assertion follows from Lemma, 1.1.) Hence there is at least one such
node in G - z too. Therefore eG—«(y) = r(G).

b) Let y € V(G —z), y ¢ C(G) — {z}. Then eq(y) > r(G) and there is a node ¢
different from z in G such that dg(y,q) > r(G). Then also dg—z(y,q) > r(G).
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¢) To prove that G —z is an F-graph we must show that dg-z(y,z) = r for every
two central nodes y, z from C(G) — {z}. No y — z geodesic in G can contain the
node z. Therefore, dg(y, z) = dg—z(y,2) = r.
This completes the proof.

Remark 1.1. The converse assertion does not hold. The graph G in the Fig.1 is
not an F-graph, but G — z4 is an F-graph.
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The following theorem gives a necessary and sufficient condition for a graph G
to be an F-graph.

Theorem 1.2. Let G be a graph with r(G) =r > 2 and C(G) = {1, 22,..., %k}
k > 3. Then G is an F-graph if and only if for every i = 1,2,...,k the graph
G — z; is an F-graph with r(G — z;) = r and C(G — ;) = C(G) — {z:}.

Proof. If G is an F-graph, then the assertions follow immediately by Theorem 1.1.
Let G — z; be an F-graph, r(G — z;) = r and C(G — z;) = C(G) — {z;} for
i=1,2,...,k Let G not be an F-graph. Then there are two different nodes z;, z;
from C(G) such that dg(z,z;) < r. Since |C(@)] > 3, there is a node zn, € C(G)
different from z; and z;. As follows from the assumption, G — z,, is an F-graph,
zi,zj € C(G) — 2 and (G — &m) = r. Thus dg—s,, (zi,zj) =r. Every z; — x;
geodesic in G must pass through the node z,,. Then there is an z; — zm path
P in G of length less than r, which does not contain the node z;. The graph
G — z; is an F-graph, r(G — z;) = r and zj,2m € C(G — 2;). Then the distance
d¢i—z;(2j,2m) < 7, which is a contradiction.

In the next part of this paper we will examine the possibility of the extension
of an F-graph G about one node. First we define the set of nodes of G such that

adding a new node to V(G), which is connected with all the nodes from this set,
gives again an F-graph.

Definition 1.1. Let G be a graph with r(G) =r > 2. Let J be a subset of V(G),
|J| > 2, with the following properties:
1. da(y,J) =r — 1 for every y € C(G)
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2. dg(t,J) <r—1forevery t ¢ C(G)
3. for every node u € V(G)—C/(G) there is at least one node v such that de;(u,v) >
rand dg(u, J) 4+ de(v, J) >r — 1.

We will call such a set J an e-set of G.

Theorem 1.3. The neighborhood N¢(z) of any central node of an F-graph G is
an e-set of G ~ .

Proof.

1) Since G is an F-graph, dg(z,y) = v for every y € C(G),y # z. Therefore,
d(;_x(y, N(;(.‘E)) =7 — 1.

2) dg-(t,Ng(z)) < r — 1 for every node t € V(G) — C(G), since z € C(G).

3) For every node u € V(G) — C(G) there is at least one node v € V(G) — C'(G),
v # x, such that dg(u,v) > r. Then also dg_z(w,v) > r and
d(i—z(uy N(r'(l;)) + d(,?war(vv NG(‘E)) > r -1

Corollary 1.2. Let G be an F-graph with r(G) = 2. Let ¢ € C(G). Then Ng(z)

is an e-set in both G and G — z.

Definition 1.2. Let G be a graph. Let J be any subset of V(G) and z ¢ V(G).
Then the graph with the set of nodes V(G) U {2} and the set of edges
E(G)U{zy | y € J} is denoted by (G + z),.

Theorem 1.4. Let G be an F-graph with vr(G) = r > 2 and z ¢ V(G). Let J
be an e-set of .  Then (G+=z), is an F-graph, r((G+z);) = r and
C((G +1),) = C(G) U L),

Proof. As follows from the properties of J, the eccentricity of z in (G + z) ; is equal
to rand d(G4.),(z,y) = r for every y € C(G). Since for any y,z € C(G), y # =z,
the shortest y — z path in (G + ), cannot contain the node z, the distance
d(cya),(Y,2) = 7. Let u € V(G) — C(G). Then there is a node v € V(G) — C(G)
such that dg(u,v) > r and dg(v, J) +de(v,J) > r — 1, i.e. the eccentricity of u in
(G + ), is greater than r. This completes the proof.

Corollary 1.3. Let G be an F-graph with r(G) = 2, « ¢ V(G) and y € C(G).
Then the graph (G + )N (y) is also an F-graph with radius two.

COfollary 1.4. Let G be an F-graph with r(G) > 2 and |[C(G)| = k, k > 3.
Then G is an (H +x); graph for some F-graph H with r(H) = r(G)
C(H)=C(G)—{z}. Ng(z)=J is an e-set in H.

Theorem 1.5. Let G be a graph, r(G) = r > 2. Let C(G) = {z1,22,..., 21},
k > 2. Then G is an F-graph if and only if Ng(z;) fori = 1,2,...,k satisfy the
following conditions in the (not necessarily connected) graph H = G — C(G):

1) dy(Ng(z:i),Na(z;)) =r —2forevery i #£ 5, 4,5 =1,2,...,k.

2) dy(u,Ng(z;)) <r—1forevery u e V(H), i =1,2,... k.

3) For every u € V(H) there is a node v € V(H) such that dy(u,v) > r and
d}[(u,N(;(wi)) + dH(U,N(;'(x,‘)) >r—1fori1=1,2,...,k.

and
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Proof. Let G be an F-graph.

1) Let i, € (1,k), ¢ # j. Then dg(z;, ;) = r and there is an ; — z; path P of
length r in G, which does not pass through any other node of C(G). Therefore
dH(NG(a:i),Nc;(:rj)) = — 2.

2) Let w € V(H) and z; € C(G) be two nodes for which dy(u, Ng(z:)) > r — 1.
Then also dg(u, Ne(z:)) > r — 1, a contradiction.

3) Let v € V(H). Since u ¢ C(G) the eccentricity of v in G is eg(u) > r and hence
there is anode v € V(H) such that dg(u,v) > r. Hdy(u,v) < r, then there is an
u —v path P of length less than or equal to r in H. Since any u —v path from H
also exists in G, we arrive at a contradiction. Therefore dy(u,v) > r. Suppose
there is a node z; € C(G) with dy(u, Na(z;)) + du(v, Ng(z;)) <r — 1. Then
also dg(u, Ng(z:)) + da(v, Ng(zi)) < r — 1 and dg(u,v) < r, a contradiction.

Let H be a graph and let the subsets Jy, Ja,..., Ji satisfy the conditions of the
theorem. We prove that the graph G formed by adding k new nodes z1,z2,...,zg
to H in such a way that Ng(z;) = Ji, ¢ = 1,2,...,k, is an F-graph with
C‘(G) - {1:1,152, v ,.‘Ek}.

1) Since dg(Neg(z:), Na(zj)) = r — 2, then dg(zi,z;) = r for every i,j € (1, k),

P
2) dalas,u) < r for every u € V(H), as dy{u, No(z:)) <r— 1L
3) Letu € V(G)—C(G). Thenu € V(H). Thereis a node v such that dp(u,v) > r.

If de(u,v) < r then any u — v geodesic of G contains a node z; € C(G),

i € (1,k). Then dg(u, Ng(zi))+du(v, No(x;)) < r—1, which is a contradiction.

Thus eg(u) > r.

Corollary 1.5. Let G be a graph, r(G) = 2. Let C(G) = {z1,22,..., 2}, k> 2
be the center of G. Let H = G — C(G). Then G is an F-graph if and only if

1) Ng(z:) N Ng(z;) # @ forevery 4,5 =1,2,...)k; i ## 3.

2) Ng(z1), Na(z2),...,Ng(zi) are dominating sets of H.

3) For every node u € Ng(z;) there is at least one node v ¢ Ng(z;) with
dp(u,v) > 3.

Theorem 1.6. Let G be an F-graph with r(G) = r > 2 and |C(G)]| > 4. Let

Py, P, be two paths of length r between two disjoint pairs of central nodes of G.
Then

1) Py, P, are disjoint if r is odd;

2) Py, P, have at most one common node if n is even.

Proof. Let z,y and z,t be two disjoint pairs of central nodes of G. Let Py, Py be
two paths of length r between 2,y and z,t, respectively. Let ¢ be a common node
of P;,P,. If r is even, then ¢ must be the node in the center of P; and Pp. If r
is odd, then the distance between at least two of the nodes z,y, 2, is less than r,
which is a contradiction.
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2. CONSTRUCTIONS OF F-GRAPHS.

Theorem 2.1. Let G be a connected graph with v(G) = r > 2. Let n,k be natural
numbersr < n < d(G), k> 2, and let X = {z1,29,..., 21} be an arbitrary subset
of V(@) = {xl}lzgc)' such that

1) dalzi ;) = nfor every z;,z; € X, ¢ # j;
2) da(xi,z;) < nfor every z; € V(G) — X and z; € X.
Then there is an F-graph H with r(H) = n, C(H) = X containing G as an

induced subgraph.

Proof. We construct the graph H as follows (Fig.2): Add four new nodes p1,pa, 1,1t
to V(G). Each pair of nodes z;,p; fori = 1,2,...,k; j = 1,2 is connected by an
x; — p; path of length n/2 if n is even, |n/2| + 1 if n is odd and every two such
paths have in common at most one extremity. Finally we add two disjoint paths
p1 — ty and py — ty each of length |n/2].

As follows from the construction, G is an induced subgraph of H. The eccen-
tricity of any node from X in H is equal to n. The eccentricity of any other node in
H is greater than n. Moreover, dy(z;,zj) =nfor every 1,7 =1,2,...,k; i # j.
Therefore H is an F-graph and C(H) = X.

t t, ®
> t; — p; paths of length ["/5]
b1 P2 x; — p; paths of length */, for
G > an even n and |"/2] + 1 for an odd n
M\ ® e - e
Iy To g Tk Tk41  Th+2 TV (a)|

Fig.2
Remark 2.1. For any graph G there is at least one such subset X for n = d(G).

As is shown in [3], for any graph G of order p there is an F-graph H with
diameter 4 and |V(H)| = p + 5, such that G is an induced subgraph of H. Let
G be an F-graph. The following construction shows that the substitution of any
node x € V(G) — C(G) by an arbitrary graph results in an F-graph with radius
7(G) and center C(G). :

Let ¢ be a graph. Let G be an F-graph with r(G) = r > 2 and let s be an
arbitrary node from V(G) — C(G). We say that the graph H arose from G by the
substitution of s by Q if
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Fig. 3

V(H)=V(@)UV(Q)—{s} and
E(H)=E(G)UEQ)U{zy |z € V(Q) and sy € E(G)} —{sy|sy € E(G)}.

Theorem 2.2. Let G be an F-graph with r(G) = r > 2. Let s be an arbitrary
node from V(G) — C(G). Let Q be a graph and H be the graph constructed from
G by the substitution of s by  in G. Then H is an F-graph with r(H) = r(G)
and C(H) = C(G).

Proof. Let € V(Q). Then en(z) = eg(s) > r. Let z € V(G), = # s. Since
du(z,y) = dg(z,s) for every y € V(Q), the eccentricity em(z) = eg(z). Let
z,y € C(G). If du(z,y) < r, then there is an & —y path P in H of length less
than r. Any such path must contain at least one node from V(@Q). Replacing all
nodes from V(Q) by s in P gives an  — y trail of length less than r in G, which
is a contradiction. Thus dy(z,y) = 7.

Corollary 2.1. Let G be an F-graph with r(G) =r > 2. Let z € V(G) — C(G)
and y ¢ V(G). Then (G +y)ny (o) 1S an F-graph with radius r and center C(G).

Let G4,G2 be two F-graphs with r(Gy) = r(G2) = r > 2. Let |[C(Gy)| =
|C(Gy)| = k, where k > 2 is a natural number.

Let C(Gy) = {z1,22,...,2}; C(Gz) = {y1,¥2,...,¥x}. Let H be the graph
constructed from the graph G1 U Go by the removal of all the nodes y;, for ¢ =
1,2,...,k and by adding the set of edges {ziq | yig € E(G2)}, (Fig.4). We say that
H is an amalgamation of G1 and G; on C(G,) and C(Gz). (Fig.4).
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Theorem 2.3. Let G1,G; be two F-graphs with r(Gy) = r(Gz) = r » 2 and
IC(G1)| = |C(G)| = k, where k > 2 is a natural number. Then the amalgama-
tion I of Gy and Gy on C(G1) and C'(G) is an F-graph with r(H) = r and
C(H) = C(Gh).

Proof.

1) dy(zi,z;) = da, (zi,25) = dey (yisyj) = for every 4,5 = 1,2,...,k; 4 # 7.

2) du(2i,q) = de, (zi,q) <rif g€ V(Gy); fori=1,2,.. . k;
du(zi,q) = de,(yi,q) <rif g€ V(Gy) for i = 1,2, . k.

3) Let ¢ € V(Gh), g # a4, for o = 1,2,... k. Then en(q) > eq,(q) > r. Let
q € V(Gz2), g # yi, for1=1,2,... k. Then ey(q) > eq,(q) > r

Therefore C(H

) = A{z1,22,..., 2}, r(H) = r and dg(z;,z;) = r for every
i?J_1’27"'7 ’ #J
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