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Abstract
Suppose R is a union of two subsets Ry and R, whose Steiner minimal trees

SMT(R) and SMT(R;) are known. The decomposition question is when the

Steiner minimal tree SMT(R) for R is just the union of two Steiner minimal trees on
Ry and R, respectively. In this paper a special case is studied, that is, Ry=bcda,

Ry=defg are two non-overlapping rectangles with a common vertex d so that a,d,e

lie on one line. We conclude that SMT(R) has only two possible structures. We
also give two sufficient conditions for the required decomposition SMT(R{UR;) =

SMT(R{)U SMT(R;), and prove that under suitable assumptions of randomness,
the probability of such a decomposition is 0.9679.

1. Introduction

The Steiner problem for a given set R of points (called regular points) in the Eu-
clidean plane is to construct a shortest network interconnecting these given points,
with some additional points (called Steiner points) [2]. The shortest network is a
tree, called the Steiner minimal tree for R, and denoted by SMT(R). If the de-
gree of every regular point is one, then the tree is called full. All angles in Steiner
minimal trees are no less than 120°. This is called the angle condition of Steiner

minimal trees.

As in other fields of mathematics, the following decomposition question also

can be raised in this shortest network problem: If R is a union of several simple
subsets R;, 1 = 1,2, ..., k, whose Steiner minimal trees are known, then when do we

have
k k

SMT(R) = SMT(|J Bi) = | J SMT(R:)?

g=1 d=1
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Clearly, we should give some restraints on the subsets. In this paper we study a
special case: 1 = 2 and R, are rectangles. More specifically, suppose R = R; U Ry
where Ry = beda, R, = defg are two rectangles with a commmon vertex d so that
a,d, e lie on one line. (For convenience, we assume that the line is horizontal.) Then
R is called a union of two orthogonal rectangles (Fig. 1).
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In this paper we prove that, up to symmetry, SMT(R) has only two possible
structures. Then we give two sufficient conditions for the required decomposition
SMT(Ry U Ry) = SMT(R,) USMT(R,), and finally, prove that under suitable
assumptions of randomness, the probability of such a decomposition is 0.9679.

2. Steiner minimal trees for r

By the topology we mean the structure of the network. It has been proved
that we need only consider full Steiner topologies in order to determine Steiner
minimal trees [3]. Usually the vertices of an angle or a polygon are written in
counterclockwise order. Following Cockayne [1], we denote by (ag) the third vertex
of the equilateral triangle A(ag)ag. Hence, the point (ag) is on the left side looking
from a to g. Note that by Melzak’s construction [4], the Simpson line of a full
Steiner tree can also be expressed by this notation.

A path psisa...smq is called a left- (or right-)turn path (starting with edge ps;)
if it always turns left (or right) at every vertex s;, 1 < 1 < m, on the path. It is
called a Steiner path if all s; are Steiner points. Suppose psi$s...5,q is a convex
polygon and point a is outside it and on the same side of pq as all s;. Then we call
the path psisa...smg convez to a. The following general lemma is easily seen.

Lemma 1. Suppose two lines 1 and {; meet at a regular point a at a right angle.
(1) Then no one edge of the Steiner minimal tree can intersect both {1 and 5.
(2) If there is a Steiner path which is convex to a and intersects [; and I at p

and 7 respectively, then there is one and only one Steiner point s between p and r.
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Moreover, the angle between ; and sp, as well as the angle between I and sr, are
both less than 30°.

The length of an edge or a tree is denoted by |---|.

Corollary 1. In the Steiner minimal tree T' of R, the degree of d is no more than
two, and the degree of all other regular points is one.

Proof. If there are two edges at b (or f), the angle between them is less than
90°. If there are two edges at a (or c,e,g), then the angle between them is less
than 120° by Lemma 1. In both cases the angle condition of Steiner minimal
trees is contradicted. Suppose the degree of d is three. By the angle condition we
may assume without loss of generality that one Steiner point of d lies in Zadg and
the other two Steiner points lie in Ri, Ro respectively. Then the tree T must be
SMT (adg) U SMT(bed) USMT(def). Since the three angles at d are all equal to
120°, it is easy to see that |ad| = |del, [cd| = |dg|. It follows that |T| > [T1], T1 as
in Figure 1. T is not minimal. B

Among the different trees, we consider in particular the Steiner trees 11, T3, T3

given by (see Fig. 1)
Ty = SMT(Ry)| JSMT(Ry),

T, = (ba)((gf)d) | J(cd)e,
Ty = (da)g|_J(cb)((df)e).

Clearly, the topology of Ty is symmetric to the topology of Ty. Define
fla,y) = /22 +zyV3+ 12

Lemma 2. f(z,y) > zv3/2+vy, for z>0,y>0.
Proof. It can be verified directly.
Theorem 1. Up to symmetry, the Steiner minimal tree for R, is either T3 or T5.

Proof. Suppose T is a Steiner minimal tree for R. Let the path from b to a
be bs) -+ s}, a with &y Steiner points, the path from b to ¢ be bsy - - - sg,c with ko
Steiner points. By Corollary 1, s; = sy k1 > 1,k > 1, and at most one of k1, ko
equals one. So k; + k2 > 3. Since there are 5 Steiner points in a full Steiner tree
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for R and the Steiner point adjacent to f must lie in R, k1 + kg < 5. Without loss
of generality assume k; < ky. There are just 5 cases to consider.

(1) k1 = 1,k = 2. By Lemma 1 the third edge of s; can neither intersect cd
and ad, nor end in R;. Hence, s, joins d, and consequently, T' = T7.

(2) k1 = 1, ko = 3. s3 lies in Aedc and the third edge of s3 meets de at a point,
say p. Again by Lemma 1 the third edge of s; can neither intersect ad, nor end in
R;. It cannot end in Aedc, otherwise one of the right-turn paths starting with the
third edge of so and s3 ends nowhere. Hence, so joins d or s; = d. In the former
case let g be the intersection of sss3 and cd, and let ¢’ be the point on dc such that
dg| = |qc|. Then

|((ba)d)(pe)| = |(ba)(dg)| + [SMT(pgc)| > |(ba)(¢'c)| + [SMT(pdq')|.

Hence, T is not minimal. In the latter case, |ad| > |dp| since Zszds; > 120°. By
Lemma 2 using Melzak’s construction

|SMT (abd)| + |SMT (dep)| = f(labl, |ad]) + f(|dc], |dp])
V3
2

= |SMT (abed)| + |dp|.

3
> ot + ad| + L) + oy

However, if a tree contains SMT (abed) U dp as its part, then either the degree of
d is three or the degree of e is two. Hence, Corollary 1 is contradicted either for d
or for e. This means that SMT(abd) U SMT(dcp) is not a minimal tree spanning
{a,b,c,d,p}, and hence, T is not minimal either.

(3) k1 = 2,k2 = 2. Since ‘the third edge of s, and sy are parallel, one has to
meet ad and another has to meet dc. Hence, one of them contradicts Lemma 1.

(4) k1 = 1,ko = 4. By the angle consideration it is easy to see that one of
$1,...,34, and in fact sz, should collapse into d. It follows that s, lies in Aadyg
and s4 lies in Aedc. There are two possibilities. If s, joins g and s4 joins another
Steiner point ss which is adjacent to both ef, then it is easily seen that the tree
T = SMT(abdg) USMT((dcef) is longer than Ty. If s4 joins e and s joins another
Steiner point which is adjacent to both ¢ and f, then T = T5.

(5) kv = 2,ky = 3. If no Steiner point of s1,s82,s3 collapses into d then
Lshab + Lbcsz = 270° by considering the sum of the interior angles of abcszszs1 5.
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Lemma 1 is then contradicted. However, if s3 = d, then the subtree spanning
abdp = (ap)(db) is longer than (ba)(pd) where p is the intersection of dg with the
third edge of s5. So T is not minimal. u

3. Two sufficient conditions for SMT(R) = SMT(R,)|J SMT(R:)

Let the widths and heights of R; be w; and h; (i = 1, 2) respectively. Because
the Steiner minimal tree is only concerned with in the relative position of two
orthogonal rectangles, we may assume without loss of generality that w; is the
largest of wy, by, wa, he. Let s be the Steiner point in T which lies in Aadg.

Lemma 3. T; exists, i.e., the Steiner point s does not collapse into d, if and only
if hy/wy < he/ws. By symmetry, Ty exists if and only if hy/wy > ha/ws.

Proof. Let ¢ = Z(ba)da, ¢ = Lgd(gf). We need to prove that ¢y + ¢ < 30° if
and only if hy/wy < he/wq. Let v1 = Lbda, v, = Lgdf. It is easily shown that

cot ¢y = 2cotyp +\/§, cot ¢o = 2 cot v + /3.

Then ¢; + ¢2 < 30° if and only if

cot 1 cot g — 1
t SR S S
cot(¢1 + ¢2) cot 1 + cot ¢
_ (2coty1 + v3)(2coty + V3)—1
2cot 1y +2cot'yz\/§

> /3.

This inequality is equivalent to cot vy cot vz > 1, i.e., hy/wy < ho/ws. u

Since only one of T, and 7% can exist by Lemma 3, by symmetry, we assume
that Tj exists, (i.e., hy/wy < hg/ws) from now on.

Lemma 4. f(z,y) +z >3z +vy, for >0,y >0.

Proof. It can be verified directly by the definition of f(z,y).
IT>| = f(h1 + ha,wi + wa) + f(h1, wa).

Theorem 2. If hy < wo, then |T1| < |Tn|.
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Proof. First we assume hy = wq. By Lemma 4 we have

|Ts| = f(h1+ ha, w1 +w2) + f(h1,w2)
> f(h1 + ha, w1 + wa) + (hy + w2)
> V3(hy + ha) + (w1 + wy) = |SMT(R,)| + |[SMT(Rg)| = |T4|.

Now suppose hg < ws. Let sg, s4 be the Steiner points incident to f, e respec-
tively (Fig. 1(2)). We shrink de and gf till wy = ha. Note that both Zssfg and
/ssed are less than 30° by Lemma 1(2).

|Ta| _
811)2

—(cos Lss fg + cos Lssed)

_ 7|
3’11}2 )

<-1
Hence, by the variational argument [5| we have [T3| > [T1]. =

flz,y) = (E—g—g)\/%ﬂ/ﬁ_, for z >0,y > 0.

The equality holds if and only if z = y.

Lemma 5.

Proof. Put ¢/ =4 = (¢ +y)/2. Then 2’y = (z +y)?/4 > zy, and equality holds
if and only if z = y. So,

Fz,y) = /2% + 2yvV3 4+ 37
= J@+y? -2~y
> \/(:v’ +y)? - (2- \/g)z’y’

— \/:1/2 + xly/\/—i); + y/2

Theorem 3. Suppose hy > wy. Then |Ty| < |T] if

hy 4wy 2-2++3

withy 2213 V3)
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Proof. Since hy > ws, [T1| =1+ ha + h1+/3 + w2v/3. Then

[Ty| = f(hy+ ho,wi +wa) + flh1,we)

> (h1+h2~;w1+w2)\/;7+<h1—§2~w2) 213
2 3 /
:(w1 +h2)<m—':2t'—\/—"> +(h1 +’LU2> 2+\/§

= (wy + hg) + (b1 +w2)V3

o (VB E) o (1= L)

> (wy + ha) + (k1 + w2)V3 = |T1],

where the first inequality comes from Lemma 5 and the last inequality comes from
the condition (1). @

4. The probability that sMT(R) = SMT(R:) U SMT(R,)

Since we have assumed before that wy is the largest of wy, h1, we, he, therefore,
all hy,ws, ko will be no more than one by a further assumption w; = 1. Remember
that we have assumed by symmetry that hq /w1 < he/w,. It follows that hy > hijws.
On these premises, the whole space of possible parameters is

1 1 1
0 JO Jhiwsa

To evaluate the probability that T5 is minimal, we may assume by Theorem 2
that hg > wq. Hence, |T1] =14+ hg + h1v3 + w2/3. Let

g(h1,we, hy) = [Ta| — |T1]
= f(h] + ha, 1 +'LU2) -+ f(h,l,UJg) —1—hg — hl\/§ - HJQ\/—S_. (2)

Clearly, g(0,0,0) = 0, g(0,0,hs) <0 and g(1,1,1) > 0.
Lemma 5. f(z +2',y+¥) < f(z,y) + f(&',y").

Proof. From the triangle inequality

VE+@2 +y+ V) <V P+ Va? +y?
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it follows that
flz+2 y+y) = \/($ +2)2+ (@ + )y +y¥)V3+ (y +y)?

= \/((m—x’) + —?(y +y)) + (-;—(y +))°

< \/(w + %—%)2 + (%y)2 + \/(93’ + —?y’)z + (%y’)2

22 + ayV3 + Y +\ 22 + 2y V3 + 2
= f(z,y) + f(@",Y)- =

Lemma 6. g(hy,ws,hs) is convex and monotonically increasing in hi, w2 and

decreasing in h,.

Proof. Note that
_\/E < _(?_f_ 2z + V3y
2 "oz 2f(z,y)

and
V3 o _ V3 + 2y
2 oy 2f(z.y)

It foll that

e * _?i > 0 g_g._ > 0 2‘?_ <0
Bhl ’ (911)2 ’ (9}7,2

Moreover, by Lemma 7 we have
hi+ by wy+wh ha + by hy 4+ hy + hgy + K wy + Wwh
1 1 W2 2 2)=f( 1 2 14 2)

e R D) ’ 2
hy + R, wy + wh
+ f( =)
_1Mh2+h’2_h1+h’1\/—~w2+w’2\/§
2 2 2
hi+hy 1+w h’+h’ 1+ w}
< (=5 ) + 2)
2 2
h1 wsy hl ’U)2
+f(2, 2)+ )
1

— 5 —hy = h1\/§— w2\/§)
- Sy = V3 — w3

(g(h19w2a hg) + g(hl?wév /2))

l\)l»—d
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This proves the convexity of g(hq, we, ha). s

Now we can calculate the probability of the event that T5 is minimal. The space
of the event is E» = [ [ [ dhidwydhy where w is bounded by hy = 0,w; = 0,he = 1
and the surface g(hy,wa, h2) = 0 by Lemma 8. Taking cylindrical coordinates, let

hy =rcosf, wy = rsinf. Hence,

Ez_///dhzrdr

Since we have proved that g(hy, we, ha) is convex and monotonically decreasing in
ho, the interval of integration with respect to hs is from h3(6.7) to 1 where h3(6,7)
is the root of g(h1, ws, he) = g(0,r, hy) = 0. Put

p(f) = cosf +sind, g(6) =1+ V3cosfsind.

It is easily deduced from (2) that

(rcos8)? + (1 + rsinf)? + v/3rcosf(1 + rsind) — (1 + V3rp(6) — rq(8))?

h3(,r) =
2(6,7) 2(1 + /3rp(8) — rq(6)) — 27 cos# — V/3(1 + rsin )

r2(2v/3p(0)q(8) — 3p%(0)) + r((2 — 2v/3) sinf — /3 cos 6 + 2¢(0))
r(v/3sind + (2v/3 — 2) cos 6 — 2g(9)) +2 ~ V3 '

Furthermore, the interval of integration with respect to r is from 0 to 7*(8) where
7*(8) is the positive root of the equation h3(6,7) = 1, i.e., the quadratic equation

r2(2v/3p(0)q(0) — 3p°(6)) + (2 - 3v3)p(6) +44(0)) —2+V3=0.  (3)

Finally, the interval of integration with respect to 6 is clearly from 0 to w/2. Due
to the symmetry of p(#), ¢(#) with respect to 6, equation (3) is also symmetric. Its
root have extremes at § = 0 and § = w/4. Hence, it is easy to obtain

minr* (§) = r*(i’-) =0.241, maxr*(f) = r*(0) = 0.286 .
Suwe g(8,r, he) is convex, we obtain the bounds of F» as

n/2 prminr”(6)
0.0152 = % ’T(mmr / / / dho(rdr)d
< Fo

w/2 maxr”(6) T 2
/ / / dha(rdr)df (ma'x"" 00642 .
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Using a mathematical software like Maple or Mathematica we get the accurate
value of this integral:

/2 prt(8) ol
Ey = / / / dha(rdr)df = 0.0241 .
0 0 16,7

Hence the probability that T3 is minimal is E»/E = 0.0241/0.75 = 0.0321 .

Theorem 4. The probability of

SMT(R) = SMT(RyU Rp) = SMT(Ry)| | SMT(Ry)
is (1 — Ey/E) = 0.9679 .
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