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ABSTRACT: 

Let G be a simple undirected graph with non-negative edge 

weights. In this paper we consider the following combinatorial 

optimization problem : Find, in G, a minimum weight spanning tree 

having diameter at most D. This problem is trivial for D :S 3 and 

NP-complete for D :: 4. In this paper we develop and implement a 

number of Branch and Bound algorithms for this problem. Computational 

results, based on simulated problems, are discussed. 

1. INTRODUCTION 

Let G = (V,E) denote a finite undirected simple graph with vertex 

set V and edge set E. We assume that G is connected and every edge 

(x,y) has a non-negative weight w(x,y). Determining a minimum weight 

spanning tree (MllST) in G is a fundamental problem that arises in 

network design and as a subproblem in many combinatorial optimization 

problems such as vehicle routing. Very efficient procedures for 

solving the MWST problem exist [5]. In many applications, one is 

interested in determining a minimum weight spanning tree having 

certain prescribed properties. Except for trivial restrictions such 
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problems are computationally difficult [8]. In this paper we consider 

the case when the spanning tree has a diameter restriction. The 

distance d(x,y) between two vertices x and y is the number of edges in 

the shortest (x,y) - path in G (note that the shortest is in terms of 

the number of edges). The diameter d (G) of G is defined as the 

maximum distance in G. The minimum weight spanning tree with bounded 

diameter D (MWST-D) problem is : 

Find, in a given weighted graph G, a minimum weight 

spanning tree of diameter at most D. 

Garey and Johnson [6] have shown that the MWST-D problem is 

NP-complete for any fixed D ~ 4; the problem is trivial for D s 3. As 

this problem arises in network applications [3] it is of interest to 

develop both exact and heuristic algorithms to solve it. 

Achuthan and Caccetta [1] provided a mixed integer linear 

programming formulation (MILP) of the MWST-D problem. In [2] we gave 

another MILP formulation of this problem as well as a number of 

solution procedures based on Branch and Bound methods. A comparative 

analysis, based on simulated problems, of these methods indicated 

significant computational advantage could be achieved by exploiting 

the "level structure" of a diameter restricted tree. The objective of 

this paper is to generalize some of the ideas introduced in [2]. As 

we shall see in Section 4 this results in significantly improved 

algorithms. 

In the next section we give an improved MIL? formulation of the 

MWST-D problem. Section 3 summarizes the procedures described in [2] 

which are used as a basis of our work in Section 4. 
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2. MILP FORMULATION OF THE MWST-D PROBLEM 

MILP formulations of the MWST-D problem have been proposed in 

[1.2] . These formulations extend the given weighted graph into a 

directed graph and make use of some of the ideas associated with the 

travelling salesman problem (TSP) and the vehicle routing problem 

(VRP). Consequently solution procedures for the TSP [7] and VRP can 

be utilized to solve the MWST-D problem. To date, our computational 

experimentation suggests that the application of standard MILP 

solution techniques yields efficient solutions only for relatively 

small problems. However, exploiting the structure of the MILP 

formulation could result in more efficient procedures. Our objective 

in this paper is to develop solution procedures based on the level 

structure of a diameter restricted tree. We present in this section 

a MILP formulation for the MWST-D problem which is a little simpler 

than the previous formulations given. We give separate formulations 

according to the parity of D. 

Formulation D even : 

For convenience we let D = 2L and V(G) = {l,2 •...• n}. We extend 

the given graph G (V,E) to a directed graph G' (V' ,tA') by 

replacing each edge of G by a pair of oppositely directed arcs each 

having weight equal to that of the edge and adding a new vertex s (the 

source) and Joining it to every vertex of G by an arc having zero 

weight. Writing w
ij 

for w(i,j), our MILP formulation is : 

Minimize f L (2.1) 

(i. j ) etA' 
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subject to 

x . =1 , 
sJ 

)' x .. 
i~1 lJ 

i:;tj 

1 • for each J e V 

Y
i 

- Y
j 

+ (L + l)Xij ~ L, for each (i,j) e A' 

o or 1 , for each (i,j) e A' 

for each i e V' 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Arguments similar to those used in [1] will establish that the 

above formulation does indeed solve the MWST-D problem for even D. In 

brief, one proceeds as follows. 

Consider a solution [x .. ,y.] to the constraints (2.2) to (2.6). 
lJ 1 

Restriction to the arcs of G' with x ij = 1 gives rise to a directed 

graph G* having the following properties. The vertex s has, by (2.2), 

outdegree 1 and every vertex of V',\{s} has, by (2.3), indegree 1. 

Condi tion (2.4) ensure that G* has no cycles. Thus G* consists of 

directed paths from source s. Further, (2.4) and (2.6) ensure that 

each such path has length at most L+l. Hence from G* - s we have a 

tree (ignoring directions) of diameter at most D. Conversely, given 

any spanning tree of G with diameter at most D we can easily construct 

(see [1) a feasible solution (xij'Yi) to the MILP problem (2.1) to 
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(2.6). Hence, the MILP (2.1) to (2.6) solves the MWST-D problem. 

Formulation Dodd: 

Let D 2L + 1 and V (G) = {1. 2, . . . , n }. We form the directed 

graph G' [V,A] from G = [V,E] by replacing each edge of G by a pair 

of oppositely directed arcs each having weight equal to that of the 

edge. Note that unlike the even D case we do not add any additional 

vertices. With each arc (i,j) of A we associate a 0-1 variable x 
ij 

and wi th edge (t, k) of E we associate a 0-1 variable Ztk' Our 

formulation is 

Minimize f [cijXij + [ CijZij 
(2.7) 

(i,j)eA (i,j)eE 

subject to 

(2.8) 

[ x ij 
+ [ z .. 1, 

IJ 
for each j e V. (2.9) 

i i 
(i,j)eA (i, j lEE 

Yi - Yj 
+ (L+1 )x .. :S L, 

IJ 
for each (i,j) e A (2.10) 

x ij = 0 or 1, for each (i. j) e A (2.11) 

z .. o or 1, for each (i,j) e E (2.12) 
IJ 

and 

55 



for each E V. (2.13) 

An odd diameter tree T can be put in a layer structure wi th a 

root edge e = (u,v) such that all directed paths have u or v as their 

origin. the z .. ' s are 
lJ 

The above formulation captures this structure; 

used to identify the root edge. The justification of the formulation 

(2.7) to (2.13) is similar to that of the even case. 

3. KNOWN SOLUTION PROCEDURES 

Motivation for the new procedures developed in the next section 

comes from the limitation of the Branch and Bound methods introduced 

in [2]. In this section we briefly review these methods; we assume 

basic familiarity with Branch and Bound methods [7]. In brief. the 

Branch and Bound method for an optimization problem involves the 

decomposi tion of the given problem into a number of smaller sized 

subproblems. The important components of this procedure are 

branching, bounding and searching strategies. The branching strategy 

dictates the manner in which a given problem is decomposed into 

subproblems. In these algorithms the subproblems are MWST-D problems 

in a subgraph of the given weighted graph G with the added requirement 

that some edges are included and some are excluded from the spanning 

tree. A solution to a relaxation of the subproblem provides a lower 

bound on the objective function value. Here the relaxed (the diameter 

restriction dropped) subproblems are MWST-problems with specified 

included and excluded edges. 
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Branching Rule 1: If the solution to the relaxed subproblem is 

not diameter feasible, then the resulting tree contains a path of 

length D + 1 and a further D subproblems are generated by the 

inclusion and exclusion of the edges of this path. 

For our second branching rule we make use of the following 

notation. Let P denote the subproblem and G the corresponding graph. 
p 

Note that P is a MWST-D problem on G with edge restrictions. 
p 

Branching Rule 2: If the solution T to the relaxed subproblem p 

is not diameter feasible. and there exists a diameter feasible 

tree T' in G not containing any of the edges excluded by the 
p p 

subproblem. then two further subproblems are generated by the 

inclusion and exclusion of an edge in T' which is not in T . 
P P 

Tables 3.1 and 3.2 give computational resul ts obtained by the 

implementation of the above branching rules on a SUN SPARe Workstation 

operating at 28.5 MIPS. For each case we tested SO complete graphs 

with randomly generated edge-weights in the interval [1,1000]. We 

use the following heuristic to determine the initial upper bound. 

Further. our heuristic can be used wi th any known procedure for 

finding a diameter feasible spanning tree; we use the breadth first 

search method from each vertex. 

Heuristic Find a diameter feasible spanning tree T in the 

graph G, if one exists. For each edge e. chosen in order of 

decreasing weight. perform the following: 
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if G - {e} contains a diameter feasible tree T' then 

redefine T .= T' and G: G - {e}. 

Of a number of heuristics tested the above simple procedure performed 

competitively in terms of running time and the objective function 

value of the diameter feasible tree generated. We note that in our 

implementation of Branching Rule 2 we apply the Heuristic to IVI 
diameter feasible trees generated by specifying the root vertex. This 

provides us wi th a good upper bound as well as an ordering (based 

on the weight of the tree) of the vertices for processing as roots. 

Tables 3.1 and 3.2 give the computational results for the two 

branching rules. 

CPU TIME (SEC) No. of Subproblems 
IVI D Ave Min Max Ave Min Max 

10 8 0.0 0.0 0.0 2 0 27 
7 0.0 0.0 0.1 4 0 49 
6 0.0 0.0 0.1 11 0 165 
5 0.1 0.0 0.1 41 0 324 
4 0.1 0.0 0.4 201 0 1167 

15 8 0.1 0.0 0.4 24 0 329 
7 0.3 0.1 0.9 52 0 478 
6 0.2 0.0 1.0 180 0 970 
5 2.7 0.2 24.2 1801 0 12586 
4 82.1 0.1 1440.8 30611 42 339073 

20 8 0.4 0.1 3.0 121 0 1933 
7 2.4 0.5 10.9 436 0 3969 
6 7.5 0.1 92.9 3114 23 29846 

Table 3.1 Branching Rule 1 (Breadth first search) 
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Ivl D CPU TIME (sec) No. of Subproblems 
Ave Min Max Ave Min Max 

10 8 0.0 0.0 0.0 7 0 158 
7 0.0 0.0 0.2 95 0 850 
6 0.0 0.0 0.1 33 0 236 
5 0.1 0.0 0.4 420 0 1826 
4 0.1 0.0 0.2 311 0 1209 

15 8 0.1 o 0 0.5 140 0 123 
7 0.8 0.0 5.43 1912 0 15764 
6 0.3 0.0 0.7 619 0 2221 
5 4.4 0.0 26.8 13430 0 89648 
4 2.5 0.1 15.0 8503 158 53217 

20 8 0.6 0.1 2.0 716 0 3186 
7 9.3 0.0 57.2 15431 0 105959 
6 3.2 0.2 12.8 5229 318 21918 
5 119.5 5.1 774.5 218267 7162 1287754 
4 141. 8 3.0 810.5 299105 6970 1687972 

30 8 56.4 0.9 600.9 39658 0 449931 
7 12321. 0 49.8 244742.5 11242258 11908 230685549 
6 3082.0 4.0 96398.0 2451303 1653 75321931 

Table 3.2 Branching Rule 2 (depth first search) 

Note that for the largest value of IVI. Tables 3.1 and 3.2 do not 

include results for D = 4 or 5. For these values of D we were unable 

to completely solve all 50 test problems in a reasonable time. An 

alternative algorithm is developed for these D in the next 

section. Branching Rule 1, despite its simplicity and intuitive 

appeal, does not perform particularly well. This inferior performance 

is due in part, to poor upper bounds. Branching Rule 2 generates 

diameter feasible solutions at each node in the search tree and thus 

tends to maintain a tighter upper bound. However, neither method is 

suitable as the diameter bound is tightened. This led to an improved 

algori thm (Branching Rule 3 in [2]) for the case D = 4. This is 
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generalized in the next section. 

To determine the value of the Heuristic we consider the statistic 

(H-O)/O, where 

H : the objective function value obtained by the heuristic, 

and 

o : the optimal objective function value. 

The relevant statistical information is summarized in Table 3.3. Note 

that the last column of this table gives the percentage of problems 

for which the heuristic yields a solution within 10% of the optimum. 

STATISTIC 
IVI D X = (H-O)/O 

Std. % with 
Mean Median Dev. Min Max X ::S .10 

10 8 .0174 0 .0717 0 .4544 94 
7 .1158 .1120 .0747 .0011 .3231 40 
6 .0537 0 .1240 0 .5776 84 
5 .1711 .1352 .1701 .0017 .8482 38 
4 .0986 .0055 .1674 0 .7126 66 

15 8 .0164 0 .0289 0 .1224 98 
7 .0971 .0833 .0825 .0029 .3853 60 
6 .0408 .0130 .0664 0 .3037 88 
5 .1640 .1167 .1374 .0129 .5852 38 
4 .1089 .0551 .1277 0 .5081 62 

20 8 .0290 .0011 .0493 0 .1845 86 
7 .1032 .0831 .0792 .0061 .4163 62 
6 .0995 .0576 .1215 0 .4941 58 
5 .1915 .1453 .1378 .0191 .5474 32 
4 .1327 .0755 .1891 0 1.0214 60 

30 8 .0681 .0136 .0964 0 .3329 76 
7 .1486 .0974 .1479 .0059 .8543 52 
6 .1340 .1047 .1503 0 .8854 48 
5 .2196 .1892 .1623 .0098 .7688 26 
4 .1906 .1202 .1986 0 .8531 44 

Table 3.3 Performance of Heuristic 
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4. NEW SOLUTION PROCEDURES 

The method developed in this section involves the decomposition 

of the given MWST-D problem into a number of simpler subproblems which 

involve the determination of minimum weight spanning trees having a 

fixed root vertex and bounded height. Note that the height of a 

rooted tree is taken to be the distance of the vertex furthest from 

the root. 

We call a tree T with root r and maximum height h a (r,h)-tree. 

The subproblem that arises in our decomposition is the following: 

Problem 4.1: Given a weighted graph G with a distinguished root 

vertex r and a positive integer h. find a minimum weight 

(r,h)-spanning tree in G. 

We refer to this problem as the MWST-(r,h) problem. 

The MWST-D problem can be solved by considering a number of 

MWST-(r.h) problems. For the case D even it is sufficient to 

1 
consider IVI MWST-(r'2D) problems. For the case D odd we 

1 
consider lEI MWST-(r. L 2D J) problems where r is formed by contracting 

an edge. Consequently we focus our attention on Problem 4.1. 

We can formulate the MWST-(r,h) problem as a MILP problem. Our 

formulation involves transforming the given weighted graph G = [V.EJ 

wi th root vertex r into a weighted directed graph G' [V.A] as 

follows. Let V\{r} = {1.2, ...• n-1}. Then 

{(r,j) J 1,2, ... ,n-1} v {(i,j) 1 ~ i ~ j ~ n - 1}. 
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The weight w .. of the arc (i,j) is taken to be the weight of the 
IJ 

corresponding edges (i,j) in G; if the edge is not in G then the 

corresponding weight is 00. The MILP formulation is : 

Minimize 

Ci. j) Es4 

subject to 

n-l 

xrj + L x ij 
i=l 

X •• 
IJ 

i;t;j 

o or 1, 

w .. x .. 
IJ IJ 

1, for j 1,2, ... ,n-l, 

for (i,j) E s4 

(4.1) 

(4.2) 

(4.3) 

and for all ordered h-subsets {i
1
,i

2
, ... ,i

h
} of {1,2, ... ,n-1} 

h-l 

L (4.4) 

t=l 

and 

for t 2,3, ... ,h-l (4.5) 

That the above formulation does indeed solve Problem 4.1, is 

easily established as follows. Consider a solution (X
ij

) of 

constraints (4.2) to (4.5). Restriction to the arcs of G~ with 

X.. = 1 gives rise to a directed graph G* having the following 
IJ 
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properties. Each vertex of V~{r} has, by restriction (4.2J, indegree 

exactly one. Constraint (4.5) ensures that G* has no cycles of length 

at most h. Further, constraints (4.2) and (4.4) together ensure that 

Gil! has no cycles of length greater than h. Thus G* consists of 

directed paths from the root vertex r having (by (4.4» length at most 

h. Consequently the MILP formulation (4.1) to (4.5) solves the 

MWST-(r,h) problem. 

The combinatorial nature of constraints (4.4) and (4.5) restricts 

the usefulness of the above MILP formulation for solving the MWST-D 

problem. However, for small values of h. good results are obtained as 

detailed in Tables 4.1 and 4.2. As in Section 3 our computational 

results were obtained on a SUN SPARC Workstation using 50 test 

problems for each order. 

CPU TIME (sec) No of Subproblems 
IVI Ave Min Max Ave Min Max 

20 5.7 4.8 6.5 0.0 0 2 

30 31. 9 28.5 35.6 0.0 0 0 

40 113.0 102.0 120.3 0.1 0 2 

50 366.0 318.8 404.1 0.2 0 2 

100 7342.5 6928.3 8050.6 0.2 0 3 

Table 4.1 MYST-4 Results 
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Ivl CPU TIME (sec) No. of Subproblems 
Ave Min Max Ave Min Max 

10 2.6 1.4 7.9 7.6 0 102 

15 32.2 18.3 147.3 41.9 0 503 

20 204.9 93.7 681.1 155.4 2 787 

Table 4.2 MYST-6 Results 

Given the limi ted application of the MILP formulation (4.1) to 

(4.5) we now develop procedures exploiting the structure of a 

(r,h)-tree which cater for the solution of problems with larger D. 

Consider Problem 4.1. We call a spanning tree T of G feasible if 

it is a (r,h)-tree. Observe that the vertices of a feasible T can be 

partitioned into layers Lo = {r}, L
i 
•... ,~. where Li consists of the 

vertices at distance i from the root vertex r. In the previous 

methods mentioned in Section 3 for solving the MWST-D problem. 

branching was defined by inclusion and exclusion of edges. Here we 

consider branching on vertices rather than edges. 

The relaxed subproblem is defined by a partial partitioning of 

the vertices of G into layers Lo = {r}. L
i
•···• Lh . We denote by U 

those vertices of G which are not in any Li' i = 0,1 •... Ih. Thus, 

Lo,L
i

, ... ,L
h

,U is a complete partition of V(G). Observe that when U = 

qy, the layer structure restricts the choice of edges to only those 

connecting vertices in adjacent layers. However, solving the MWST 

problem on the corresponding graph does not necessarily yield a 

(r,h)-tree. For example, the MWST solution does not require that 

64 



every vertex in Ll De JOined to tne root cnoos lng the edge of 

smallest weight from a vertex in Li to a vertex in Li -
1 

will resolve 

this problem. However, this does not extend to the case when U * ~. 
This problem can be resolved by considering a directed version which 

we now describe. 

Problem 4.2 Gi ven a weighted directed graph G' wi th a 

distinguished root vertex r, find a minimum weight spanning tree in 

G' in which there is a directed path from r to every other vertex of 

G' . 

We refer to this problem as the DMWST(r) problem. This problem 

was first considered by Edmonds [4] and the best solution procedure to 

date, due to Gabow et. al. [5J, has complexity O(iVI2). 

Observe that given the MWST-(r,h) problem with a complete vertex 

parti tion La {r}. L
1

, ... ,Lh • we can form a directed graph G' by 

orienting the edges between adjacent layers from L. 
1-1 

i=1.2, ...• h. A solution of the DMWST(r) problem in G' is clearly a 

solution of the MWST-(r,h) problem. Our strategy is to work towards a 

complete vertex partition by branching on vertices not yet assigned to 

levels. We make use of the algorithm for solving Problem 4.2 at each 

step. We now describe our procedure in detail. 

Consider Problem 4.1. We introduce some notation to 

assist- in the description of our subproblems and branching 

rules. Let IT = {Lo,L
1 
•••• ,Lh .U} denote a complete vertex partition 

of G with La = {r}. We begin with the partition having Li = ~ 

for i = 1,2, ... ,h. and U = V(G)\{r} and at each stage the partition is 

65 



modified by transferring a vertex out of U. At each stage 

la' ll' ... ,lh represents a partial layer structure and this structure 

restricts some of the edges of our original graph G. Thus with each 

subproblem P we have an associated graph 

simplicity we write TIp = {r,L
1
,·· .• Lh,U}. 

G 
P 

and partition TI . 
P 

For 

With the graph G we associate a directed graph G'. As G' is 
P P P 

the graph we work with we now describe its structure by specifying its 

arc set. Every vertex in li' i =0,1, ... ,h-1, is joined by a directed 

edge to every vertex in Li +
1 

v U. Every vertex in U is joined by a 

directed edge to every vertex inli , i=2,3, ... ,h. Further, every pair 

of vertices in U is joined by a pair of oppositely directed edges. 

The weights on all directed edges are taken to be the weights of the 

corresponding edges in G. Figure 4.1 shows the basic structure of G'. 
P 

Lh c: :::> H' Lh-tC --=::> 
I I 
AA . , 

L j C :::::> -+-
I I -+-
AA . , 

L2 C :::::> 

L t c: H~ 
tt .. 

r 

Figure 4.1 The directed graph G' 
p 
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Let I' be a solution of the DMWSI(r) problem on G'. 
P P 

If the 

height of I' is at most h then we have an optimal solution to the 
p 

subproblem P. If this is not the case we find the set W of end 

vertices of II that are joined to the root r by a path of length 
p 

greater than h. We then find the set of vertices U' ~ V defined as : 

V' {u E V u is on some (r,w)-path. w E W}. 

Note that V' * ~ since T' has height greater than h. Now we create p 

subproblems by finding the vertex x E V' having maximum degree in T' 
p 

and branching according to the following rule : 

Branching Rule 4.1 : Given x we create h subproblems Pl. P2' ...• Ph 

from P by modifying IT as follows 
p 

i 1.2, ... ,h. 

A vertex of maximum degree is chosen in an effort to obtain the 

maximum change in the subproblems generated. 

We implemented (using depth first search) the above branching 

rule using the same hardware as used previously. Ihe detailed 

algorithm is presented in the form of a flow diagram in Figure 4.2. 

In our description we use the following notation. In the case 

of even D. for every vertex i E V we consider the MWSI - (i,h) 

problem. Ihe corresponding initial vertex partition is denoted by 

67 



Input: MWST - D Problem 

Set h = LD / 2J 
T* = feasible tree with diameter ::;;; D 
Z*= weight of T* 
L = cjI 

For every e E E 

add De to L 
if LB(Ile) < Z* 

N 

Select IT* such that 

LB(IT*) = min {LB(I1) : IT € £} 

N 

Update Z*. T* 

Backup in Search Tr Update L 

Select a vertex x € U having 

maximum degree in T'n* 

Use Branching Rule 4.1 and 
define nit 1::;;; i ::;;; h. 
If U\{ x} = cjI update Z*. T* 

If LB(I1j) < Z* add ITi to L 

Figure 4.2 Flowchart of Branch and Bound Algorithm. 
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where L o for 1 ~ j ~ hand 

U = V\'Lo' Similar ly, for odd D. TIe = (Lo' L
1

, ..•• Lh • U) denotes the 

initial partition for the MWST-(re,h) problem, where 

obtained by contracting the edge e. Note that here L 
o 

is the vertex 

for 1 ~ j ~ hand U = VCG.e)\.Lo' where G·e denotes the graph obtained 

by contracting the edge e of G. The weight of the tree Tn' the 

optimal solution of the DMWST problem, is denoted by LB(TI). Table 4.3 

gives the computational results for the set of test problems described 

in the previous section. 

IVI D CPU TIME (sec) No. of Subproblems 
Ave Min Max Ave Min Max 

10 8 0.0 0.0 0.6 101 0 1778 ., 0.0 0.0 0.2 260 0 1832 
6 0.0 0.0 0.1 446 0 1933 
5 0.0 0.0 0.1 1347 0 1991 
4 0.0 0.0 0.1 1972 0 2276 

15 8 0.5 0.0 3.4 1098 0 5717 
7 0.5 0.0 1.6 1427 0 3834 
6 0.4 0.0 1.2 1762 0 3226 
5 0.6 0.0 1.3 2171 0 3516 
4 0.3 0.1 1.6 2386 2080 3912 

20 8 5.7 0.0 41.6 4789 0 29550 
7 3.1 0.0 7.2 2578 0 5460 
6 3.1 0.4 12.0 3855 1746 11097 
5 3.5 2.0 7.1 3616 2370 6313 
4 1.4 0.4 3.6 3511 2420 5786 

30 8 1896.1 0.0 37396.0 637490 0 12839037 
7 179.3 14.1 1872.3 64317 2843 710092 
6 507.2 3.5 5164.8 210009 2175 2172384 
5 64.1 20.6 190.7 18467 5679 55627 
4 28.7 7.2 117.3 19802 6032 77338 

40 4 491.8 28.6 1995.6 171950 10760 695796 

50 4 7375.7 1328.9 29073.5 1596730 272770 6252282 

Table 4.3 Results for Branching Rule 4.1. 
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Our implementation makes use of the heuristic procedure described 

in Sect ion 3 for computing an upper bound. Further, by considering 

each vertex as the root, application of the Heuristic IVI times 

produces an ordering of the vertices that we use as the root vertex 

of the layered structure tree. The ordering is according to the 

weight of the Heuristic solution from each root vertex. 

From the results given in Tables 4.1 to 4.3 we observe that for 

large IVI. the MILP formulation (4.1) to (4.5) significantly 

outperforms Branching Rule 4.1 for the case D = 4. However, for D ~ 6 

this situation is reversed. Further. in comparison with the tables 

given in Section 3, we note that the new branching rule is superior 

for the case of tighter diameter restrictions and the range of 

superiority increases with IVI. This is, of course, consistent with 

the manner in which the rules were devised. 
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