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Abstract 

Over the last few years a number of authors have investigated the structure of 

optimal measurements designs. Various constructions for such designs have been 

given. In this paper we consider the construction of non-isomorphic optimal repeated 

measurements designs when t=2 and 

1. Introduction 

In a re/?eated measurements (RMD) there are t treatments, n experimental 

units and the experiment lasts for p periods. Each experimental unit receives one treatment 

during each Thus the design may be represented a pxn array contammg entries 

from {l,2, ... ,t}. Examples of RMDs with t=2, p=4 and n=4 appear in Table 1. 

1 2 2 

221 

122 

2 2 1 1 

(a) 

222 

2 1 1 

(b) 

2 

Table 1. Examples of RMDs. 

A RMD is said to be uniform on units (or columns) if each treatment appears the 

same number of times in each column, and to be uniform on periods (or rows) if each 

treatment appears the same number of times in each row. A RMD is said to be uniform if it 

is uniform on both units and periods. Thus, in a uniform RMD, each treatment appears pit 

times in each column and nit times in each row. Hence necessary conditions for the 

existence of uniform RMDs are tip and tin. The design (a) in Table 1 is a uniform RMD, 

whereas (b) is not uniform on either rows or columns. 
Let mij denote the number of times that treatment i is preceded by treatment j. A 
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RMD said to be balanced if 

m .. 
IJ 

i,j ~ t, 

where Dij is the Kronecker D, and to be strongly balanced if 

-~ 1<"< m ij - t2 ' - 1,j - t. 

The design (a) in Table 1 is balanced and design (b) is strongly balanced. 

The linear models associated with these designs have been given by number of 

authors (see, for example, Cheng and Wu (1980), Kunert (1984) and Street (1988). 

and Wu (1980) have shown that one class of optimal designs are the strongly 

balanced, uniform RMDs and they give a construction for such designs when n=t2 and 

two such designs side-by-side gives a OJ «llUU'"'" ..... , uniform design 

and and placing two of their one under the other a strongly 

balanced, uniform RMD with are ex,am.pH~s of 

Thus, in general, there are balanced, uniform RMDs with 

and A2~1 for all L The design (a) in Table 2 is the balanced, 

uniform RMD for t=2, n=4 from the construction of 

(b) and (c) show ctrr\",rrl" balanced, uniform RMD obtained from 

and vertical 

2 2 

1 2 1 2 

2 2 1 

2 1 2 

112222 

1122 122 

2 2 2 2 

221122 

(c) 1 2 2 

122 

221 

221 

2 2 

212 

2 2 

2 2 
Table Examples of horizontal and vertical pasting. 

The 

Sen and (1987) have shown how to construct a strongly balanced, 

uniform RMD for and p=3t As their construction uses two mutually orthogonal Latin 

squares (MOLS) of size t, it can only be used when there are at least 3 treatments (and t;i:6). 

We are interested in the total number of strongly balanced, uniform RMDs and 

ways of constructing all these designs for small values of t and p for varying n. In the 

remainder of this paper, we consider the construction of non-isomorphic, strongly 

balanced, uniform RMDs for the cases t=2,p=4; even,p>6 and t=3,p=6. 
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2. The Case 1=2 and. p=4 (=2t) 

In this case, the necessary conditions for the existence of strongly balanced, 

uniform RMDs are 214, 21n and 413n. Thus, n=4s, s2::1. Since the designs are uniform on 

units (or columns), each column of the array must contain two l's and two 2's. Hence 

each experimental unit must receive one of six pos:slble sequences. These are listed in 

Table 3. 

S2 

Period 1 

2 1 2 2 

3 2 2 

4 2 2 

Table 3. All sequences of length 4 containing two 1's and two 2's. 

2 

2 

1 

For each sequence we have also recorded, in Table 4, the number of times the ordered 

pairs of treatments 

(l,l)T 

(l,2)T 

(2,1)T 

(2,2)T 

(2,1) and appear on adllacc~nt 

Table 4. The number of times the ordered pairs appear in each sequence. 

1 

We let xi' i=l, 2, ... ,6, be the number of units treatment sequence Si in 

the design. Then, counting experimental units and using the fact that the design is both 

strongly balanced and uniform in rows (periods), we get the following equations. 

xl + + x3 + x4 + Xs + x6 n = 4s, 

xl + X4 + = (p-l)nlt2 

Xl + + x3 + x4 + Xs 

x2 + + x4 + 2xs + x6 

xl + + x6 

xl + x2 + x3 = nit = nl2 

xI + x4 + Xs 

X2 + x4 + x6 

x3 + Xs + X6 
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Solving, we get 

= x4 s - 2x2, 

o x2 ::; [Il s=1,2,3, ... , 

where is the largest less than or equal to s!2. 

We summarise these results in the following theorem. 

Theorem 1 

When and p=4, all crrrHHTIlU balanced, uniform RMDs have n=4s units, 

s=1,2, .... There are + 1 non-isomorphic designs with 4s units and these designs 

have a+s sequences of type and of type S6' a sequences of type and of type S5' 

and s-2a sequences of type and of type S4' where a =0,1,2, ... , . All the designs 

have as an autIDmc)rpltllSrn. 

In fact, the are obtained by !lnn,rnT',..,-j",'tp combinations of the 

(1,0,1) when and the when n=8. 

This be seen from Table 5 where all strongly balanced, uniform RMDs for 

n=4,8,12,16 and 20 are The constructed and Wu (1980) 

correpsond to the case a =0 of the theorem. 

n=4 1122 n=8 11112222 n=12 1 1 1 1 1 1 22222 
1 2 12 11221122 11222 11222 

2 1 1 22221111 2222 111111 
121 2112211 222111222111 

11112222 111111222222 
11121222 1 1 122112222 
22212111 2221 12 1 1 1 

2221111 22 221211111 

n=16 1 1 1 1 1 1 1 1 2222 2 
11112221112 
2222 222111 111 
222211 1 122221 1 1 

n=20 1 1 11 1 1 1 1 1 1 222222222 
11 11 2 21 11122222 
22222 22 21111111111 

111 111 1 1222 2222 
111 1 12221 1 1 222 
2222212211211111 
2222221122111111 

1111111122222222 
1111112211222222 
2222221122111111 
2222222211111111 

2222111112 22211111 

1111111111222222222 
11111122221111222222 
22222 1 22111211 111 
22222 21112221111111 

11111111112222222222 
11111112 21112222222 
22222221121221111111 
22222222212111111111 

Table 5. All strongly balanced, uniform RMDsfor t=2, p=4 and n=4,8,12,16 and 20. 
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3. The case t=2 and p=6 (=3t) 

Here the necessary conditions for the existence of strongly balanced, uniform 

RMDs are 216, 21n and 415n, so again n=4s, s ~ 1. There are now twenty possible 

sequences, each containing three l's and three 2's. They are listed in Table 6. 

Sequence 

Period 

2 

3 

4 

5 

6 

2 

222 

2 2 

2 2 2 2 2 2 

2 

2 2 

2 2 

2 

2 2 

222 

2 2 2 2 

2 2 2 

2 222 2 2 222 2 

2 2 2 2 

2 

2 

2 

222 

2 2 

2 2 

2 2 

2 

2 

2 

2 

Table 6. All sequences of length 6 containing three l's and three 2 's. 

For each sequence, the number of times that the ordered pairs of treatments (1,1), (1,2), 

(2,1) and (2,2) appear on adjacent periods, are recorded in Table 7. 

Sequence S1 S2 S3 S4 S5 S6 S7 S& S9 $10 Sl1 S19 S20 

(l,l)T 2 0 0 0 2 0 2 2 

(l,2)T 2 2 2 3 2 2 2 2 2 2 0 

(2,1)T 0 2 2 2 2 2 2 3 2 2 2 

(2,2)T 2 2 0 2 0 0 0 2 

Table 7. The number of times the ordered pairs (1,1), (1,2), (2,1), (2,2) appear in each 
sequence. 

We let xi' i=1,2, .. ,20, be the number of units receiving treatment sequence Si in 

the design. Then we can obtain the following equations in a similar way to those of the 

previous case, using the fact that the design is both strongly balanced and uniform on 

rows (periods). 
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-~ 
- t2 

= 5s, 

Xl+2x2+2x3+X4+2xS+3x6+2x7+2Xg+2x9+XlO+Xll+2x12+2x13+X14+2X15+X16+X17+Xrg+X19 = 5s, 

X2+X3+X4+X5+2x6+X7+2Xg+2x9+XlO+Xll+2x12+2x13+2x14+3x15+2X16+X17+2Xlg+2x19+X20 = 5s, 

xl + 

x 1 + 

xl + 

+ 

+ 

x4 + 

n 
2s, + x3 + +x5 + + x8 + x9 + xlO t 

+ + + x ll + x13 +x14 + + x16 2s, 

+ + + Xu + x14 + + XIS + X19 2s, 

+ + + xll + + + X 17 + X 18 + x20 2s, 

+ + + + + + 2s, 

+ + xlO + x I4 + + x20 2s. 

these equations, we find that 

+ x19 + 2x20 2s, 

+ 3x20 3s, 

2X17 - x 19 3x20 
xI8 - x19 x20 + 2s, 

+ x14 + x I5 - - xI8 x19 3x20 + 3s, 

- x I5 + x l7 + 2x20 - s, 

- x17 xI8 - x19 x20 + 2s, 

= 5s, 

X 19 ' x 20 ~ 2s, s = 1,2,3, .... 

In the previous section, we could find all strongly balanced, uniform RMDs from 

the equivalent equations. Here we cannot find all solutions to the above equations very 

easily. When s is any integer value then the set of solutions to the above equations are a 

module which is finitely generated. The RMDs correspond to the positive elements of 

the module (De Launey (1989». However, the basis of the module may only be 

expressible as linear combinations of the original Xi's. Hence this observation does not 

appear to make the task of the designs any easier. 

It is no longer true that all solutions have (1,2) as an automorphism. Those that do 

are called symmetric designs. Otherwise, we say that the design is non-symmetric. In a 

symmetric design 

All non-isomorphic strongly balanced, uniform RMDs with t=2, and n=4, are 

given in Table 8. We see that there are 15 designs, of which the first 10 are symmetric. 
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1 1 2 2 

1 212 
1 122 
211 
2 2 1 1 

2 121 

1 122 

1 212 
1 212 
2 ] 2 1 

2 2 1 1 

2 1 

1 122 1 122 
1212 1212 
2 2 1 2 1 

221 1 121 
1 1 2 1 1 

2121 1212 

1 1 2 2 2 

1 2 1 2 1 2 
1 2 

2 1 

2 1 1 2 

2 2 1 1 

2 2 
211 
211 
2 1 1 2 

1 1 2 2 

1 1 2 2 

2 2 1 1 

121 2 
211 

2 1 2 1 

1 1 2 

1 2 1 2 

2 1 

212 

1 

121 

122 

2 1 

2 1 

2 1 

1 122 

1 2 1 2 

2 2 1 1 

1 212 
2 121 
2 121 

1 122 

211 
121 2 
121 
212 

1 2 

121 
2 1 

2 1 

121 
212 

1 1 2 2 

1 1 2 2 

2 2 1 1 

221 1 
1 2 1 2 

2 1 2 1 

1 1 2 2 

2 1 1 

1 1 

2 1 

1 1 2 2 

2 1 2 1 

1 2 2 

1 

211 
122 

1 2 1 

1 1 2 

symmetric 

non-symmetric 

Table 8. Strongly balanced, uniform RMD's for t=2, n=4. 

The number of nOI1-1~;onl0rnmlC and non-symmetric), strongly 

balanced, uniform RMDs with and n=4,8 and 12, are in Table 9. 

Table 9. The number of non-isomorphic strongly balanced, uniform RMDs 
for t=2 andp=6. 

When t=2 and design with n=4s, s~3, are obtained by horizontally pasting an 

appropriate number of designs with n=4 and n==8, and they can be obtained in no other 

way. This is no longer the case when t=2 and p=6. Table 10 shows the number of 

designs with n=8 which can be obtained by horizontally pasting designs with n=4. (We 

used all 20 designs with n=4 - the 10 symmetric and 5 non-symmetric designs from Table 

8, and the 5 designs obtained from the non-symmetric designs by applying the permutation 
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(12).) Table 10 also gives the number of designs with n=12 which can be obtained by 

horizontally pasting a design with n=4 and one with n=8 (84 symmetric, 130 non­

symmetric and 130 non-symmetric permuted (1,2)). 

n 

symmetric 

non-s mmetric 

Total 

8 

51 

75 

126 

12 

38 

1494 

1874 

Table 10. The number of non-isomorphic, strongly balanced, uniform RMDs possible 
using pasting for n=8 and 12. 

Non-symmetric designs permuted (1 2) are included for pasting as they may 

lead to designs which cannot be obtained otherwise. Table 11 gives a design for n=8 

which is obtained by horizontally pasting a non-symmetric design for n=4 with 1 and 2 

interchanged and a n=4 design from Table 8. This design cannot be obtained by pasting 

any two designs in Table 8. For 

two of which are symmetric. 

there are 12 such strongly balanced, uniform RMDs, 

2 2 2 

2 1 2 2 2 1 

1 2 2 2 1 2 

2 2 2 2 

2 2 2 2 

2 2 2 2 

Table 11. A strongly balanced, uniformRMD for t=2,p=6 and n=8 pastedfrom a 
non-symmetric design with the non-symmetric design permuted by (12). 

Pasting doesn't lead us to all designs: For n=8 there are 88 'new' designs which 

cannot be obtained from n=4 designs and for n=12, there are 150 'new' designs. 

4. The Case t=2 and p>6 (even) 

In this section we describe another recursive construction for strongly balanced 

uniform RMDs. Using Theorem it is possible to construct such designs for t=2, n=4s 

and p=8,10,12, ... 

Theorem 2 
Let Dl be a strongly balanced, uniform RMD with t=2, P=Pl and n units, and let 

D2 be a strongly balanced, uniform RMD with t=2, P=P2 and n units. Then there is a 

strongly balanced, uniform RMD with t=2, P=Pl+P2 and n units. 
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Proof 
We can permute the columns of that the fIrst n/2 columns have 1 in the 

final row (and hence the remaining columns have a 2 in the final row). We can permute 

the columns of that the first n/4 columns with 1, n/4 columns 

with the n/4 columns begin with 1 and the fInal n/4 columns with 2. The 

[ ] 
is uniform and columns 

and the 

method of r'rHH:tr'l1f't10n 

as 

5. 

Once 

1 1 1 1 
1 12 
221 
222 

1 22 
2222 
2211 
1 1 1 1 

1 12 
1 1 2 
2 1 
1221 
2 11 
21 12 

,n'""" an, balanced, RMDs obtained vertical pasting. 

t=3 and 

have more than two treatments, 

illustrate some of these difficulties 

becomes much more 

corls1Clenng the case t=3 and p=6. 

There are now 90 sequences of 6 which contain two l's, two 2's and two 3's. 

These can be grouped into 15 sets of 6 sequences each, where sequences in a set can be 

obtained from each other by applying a permutation of 1,2 and (that is, an element of S3)' 
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The 90 sequences, grouped into the 15 sets of 6, together with a label for each 

sequence, appear in Table 13. 

(12) 

(13) 

(23) 

(123) 

(132) 

(12) 

(13) 

(23) 

(123) 

(132) 

(12) 

(13) 

(23) 

(123) 

(132) 

(12) 

(13) 

(23) 

(123) 

(132) 

(12) 

(13) 

(23) 

(123) 

(132) 

1 1 2233 sl1 

22 1 1 3 3 s12 

3322 1 1 s13 

1 1 3322 s14 

2233 1 1 s15 

331122 s16 

1 2 1233 s41 

2 1 2 1 33 s42 

3232 1 1 s43 

1 3 1 322 s44 

2323 1 1 s45 

3 1 3 122 s46 

122 1 33 s71 

2 1 1233 s72 

3223 1 1 s73 

133 122 s74 

2 32 1 1 s75 

3 1 1 322 s76 

122313 slO,l 

2 1 1 323 s10,2 

32 1 3 1 s10,3 

1 3 32 1 2 s10,4 

233 1 2 1 slO,5 

3 1 1 232 s10,6 

122331 s13,1 

2 1 1 332 s13,2 

322 1 1 3 s13,3 

1 3 322 1 s13,4 

233 1 12 s13,5 

3 1 1 223 s13,6 

1 12323 s21 

2213 1 3 s22 

332 1 2 1 s23 

1 1 3232 s24 
223131 

33 12 12 s26 

1 2 1 3 23 s51 

2 23 1 3 s52 

323 121 s53 

1 3 1232 s54 
232131 

3 132 12 856 

123 123 s81 

2 1 32 1 3 s82 

32 1 321 s83 

132 1 32 s84 

23 123 1 s85 

3 123 12 586 

1 232 1 3 s11,1 

2 1 3 123 s11,2 

32 123 1 s11,3 

1 323 12 s11,4 

23 1 321 s11,5 

3 1 2 1 32 sll,6 

12323 1 s14,1 

21 3 1 32 s14,2 

32 1 2 1 3 s14,3 

1 3 232 1 s14,4 

23 1 3 1 2 s14,5 

3 1 2 1 23 s14,6 

1 12332 s31 

22 1 33 1 s32 

332 11 2 s33 

11 3223 s34 

223 1 1 3 s35 

33 122 1 s36 

121 332 s61 

2 1 233 1 s62 

323 1 1 2 s63 

13 1223 s64 

232 11 3 s65 

3 1 322 1 s66 

123 132 s91 

21 323 1 s92 

321 3 12 s93 

132123 s94 

23 121 3 s95 

3 1232 1 s96 

132213 s12,1 

23 1 1 2 3 s12,2 

3 1 223 1 s12,3 

1233 1 2 s12,4 

2 1 332 1 s12,5 

32 1 1 32 s12,6 

12332 1 s15,1 

2 1 33 1 2 s15,2 

32 1 123 s15,3 

1 3 22 3 1 s15,4 

23 1 1 32 s15,5 

3 1 22 1 3 s15,6 

Table 13. 90 possible sequences/or t=3 andp=6. 
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Suppose there are xij units receiving treatment sequence Sij in the final design. 

Then unifonnity in rows gives us 3x6 = 18 equations and the strongly balanced property 

gives us a further 9 equations. However, the equations are not independent (for instance 

as there can only be 1 's, 2's and 3's in each row, once the number of 1 's and 2's are 

known, the number of 3's is also). The 27 equations in fact have rank 15 and involve 90 
unknown 

We simplify the problem further by finding only those designs for which all the 

elements of S3 are an automorphism. Thus n=18s and there are two independent 

equations that the 15 unknowns must satisfy. 

Let Xi be the number of sequences of type Sil in the final design. 

Then 

15 
I. x. = n/6 
i=l 1 

3s 

5n 
= "9 lOs 

(1) 

(2) 

In attempting to find solutions it appears to be easiest to work with the original equations. 

Theorem 3 

There are 72 non-isomorphic, strongly balanced, uniform RMDs with t=3, p=6, 

n=18 and with S3 as an automorphism group. 

Proof 

Any such design must satisfy the equations (1), (2) and (3) with s=1. Thus 

0::::; Xi ::::; 3. But if any Xi = 3, then either equation (2) or (3) is contradicted. If x5' xs' x9' 

XII or x14 2, then (1) and (3) can not hold simultaneously. If Xl = 2, then equation (2) 

is false. 
If Xl = 1, then either one of x3' x7 and xl3 is 1 and one of x5' x8' x9' Xu and x 14 

is 1, or two of x2' x4' x6' x lO' x 12' x I5 is 1, or one of x2' x4' x6' x lO' x l2 and x I5 is 2. 

This gives 3 x 5 + 15 + 6 = 36 designs. 

If Xl = 0, then either one of x3' x7 and xl3 is 2 and one of x2' x4' x6' X 10' x 12 and 

x l5 is 1 or two of x3' x7 and x13 are 1 and one of x2' x4 x6' x lO' x12 and x15 is 1. This 

gives 3 x 6 + 3 x 6 = 36 designs. The result follows. 0 
Similar counting shows that there are 1677 such designs when n=36 (s=2). 
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5. Summary 

In this paper we have produced constructions for all strongly balanced, uniform 

RMDs for t=2, p=4 and n=4s. All strongly balanced, uniform RMDs for t=2, p=6 and 

n=4 have been given from which we can horizontally paste to produce some t=2, p=6 and 

n=4s designs. Using t=2, p=4, 6 and n=4s we can construct t=2, p>6 (even) and n=4s 

strongly balanced, unifonn RMDs using vertical pasting. For t=3, p=6 and n=18, 36 

we have counted the number of strongly balanced, unifonn RMDs that have elements 

of S3 as an automorphism. 
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