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ABSTRACT: Let G be a simple graph on vert ices having a maximum 

matching M. The deficiency def(G) of G is the number of M-unsaturated 

vertices in G. The vertex clique covering number vcc(G) of G is the 

smallest number of cliques (complete subgraphs) needed to cover the 

vertex set of G. In this determine def(G) and vcc(G) for the 

case when G is a tree with each vertex having degree 1 or k. 

1. INTRODUCTION 

All graphs considered in this paper are finite, loopless and 

have no multiple edges. For the most part our notation and 

terminology follows that of Bondy and Murty [1]. Thus G is a graph 

with vertex set V(G), edge set E(G), v(G) vertices and c(G) edges. 

A matching M in G is a subset of E(G) in which no two edges have 

a vertex in common. M is a maximum matching if IMI IM'I for any 

other matching M' of G. A vertex v is saturated by M if some edge of 

M is incident with v; otherwise v is said to be unsaturated. The 

deficiency def(G) of G is the number of unsaturated vertices by any 

maximum matching M of G. If def(G) = 0, then, of course, G has a 
1 

perfect matching. For a maximum matching M we have I M I = 2"(n 

def(G)) . Many problems concerning matchings in graphs have been 

investigated in the literature - see, for example, Lovasz and Plummer 

[7]. In this paper we consider the problem of determining def(G); 

results for a family of trees are obtained. 
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A clique of G is a complete subgraph of G. The clique covering 

number (clique partion number) cc(G) (cp(G)) of G is the smallest 

number of cliques (edge-disjoint cliques) needed to cover the edge set 

of G. The vertex clique covering number vcc(G) of G is the minimum 

number of cliques needed to cover the vertex set of G. Many authors 

have studied the functions cc(G) and cp(G) - see for example Caccetta 

and Pullman [2], Pullman [10] and Ma et. al. [8]. In this paper we 

investigate the function vcc(G). Observe that vcc(G) IMI + def(G) = 
&CV + def(G)), with equality holding when G is triangle free. So the 

functions defCG) and vcc(G) are related. 

same as the chromat ic number X(G) of G. 

Further the vcc(G) is the 

The chromat ic number of 

regular graphs has been studied by Caccetta and Pullman [3-4]. 

The resul ts we present are for the case when G is a tree in 

which each vertex has degree 1 or k. We let LCn; 1,k) denote the class 

of trees on n vertices in which each vertex has degree 1 or k, k ~ 2. 

2. RESULTS 

We begin by making some simple observations concerning def(G) 

The defini tion implies that def(G) == v(mod 2). If dG) > 0, then 0 s 

def(G) S IJ - 2. Consider the tree T on n vertices drawn in Figure 

below, where d == n(mod 2). 

Figure 1 

-----. 
V 

n 

Clearly def(T) = d. Consequently, if D(n) denotes the set of possible 

values of def(G) as G ranges over the class of simple non-empty graphs 

on n vertices, then 
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D(n) {d: 0 s d s n-2, d = n(mod 2)} . 

Thus we need to look at restricted classes of graphs to obtain more 

interesting results on def(G). We consider the case when G is a tree. 

In view of the graph displayed in Figure 1 we need to add some further 

restrictions. We now consider the class T(n;l,k). 

Lermna 1. 

Then 

Let T E T(n; l,k) be a graph with s vertices of degree k. 

def(T) S (k - 3)s + 2 + 2L(s - l)/kJ . (1) 

Proof: Simple counting yields 

s = (n - 2)/(k - 1) . (2) 

We prove the lemma using induction on s. When s = 0, T = K2 and 

def(T) O. When s = 1. then T is a star with n = k + 1 and hence 

defCT) k - 1. Thus the result is true for s = 0 and s = 1. Assume 

it is true for all 1 S sSm and let T be a tree with s = m + 1. 

Equation (2) implies that n = (k - l)(m + 1) + 2. If T contains 

a vertex, u say, of degree k that is joined to a vertex of degree 1, 

then every maximum matching saturates u. Furthermore, there exists a 

maximum matching M which contains an edge uv with dT(v) = 1. So let 

us assume that M is a maximum matching in T which contains such edges. 

Suppose T contains s' vertices of degree k adjacent to vertices of 

degree 1, then 

s' ~ n - m - 1 
k - 1 

m - 1 
m+l-k="1 
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If I has no M-unsaturated vertices of degree k, then 

def(T) 

Hence 

def(T) 

(n - m - 1) - s' 

m - 1 
S (k - 2)(m + 1) + 2 - (m + 1) + ~ 

m - 1 
S (k - 3)(m + 1) + 2 + L~j . 

Now if k > m, then LCm - l)/(k - l)j 

So we can suppose that 2 S k S m. 

Lm/kj o and hence (1) holds. 

Ihen (k 2)(k - m) S 0 and so (m - l)k S (k - 1)(2m - k). 

Hence 

Ihus 

L
m - 1 J -< L2m k- kJ ~ 

s 2 L~J . 

def (T) S (k - 3)( m + 1) + 2 + 2 L~J ' 

proving that (1) holds for s m + 1 when I has no M-unsat urated 

vertices. 

Now suppose that I has M-unsaturated vertices of degree k. Let 

u be such a vertex and let NI(u) {v
1
,v

2
"" .vk} denote the 

neighbours of u. Form the graph II from I as follows. Delete u and 

add k new vertices u
1
,u

2
, ... ,uk and k new edges viui' sis k (see 

Figure 2). 
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Then T' consists of k trees T
l

, T
2

, ••• , Tk with Ti E T(ni ;l,kJ. 

s~ppose Ti has si vertices of degree k. Then si ~ m for all i and 

.L si = m. Now, by our induction hypothesis, 
1=1 

(k - 3) 

T 

si - 1 
si + 2 + 2 L-k-J . 

~2 

_~~V ... l!.--___ u .. \", "2. '. ~ 
"7 uk 

T' 

Figure 2 

For each 1 there exists a maximum match1ng 1n T i that does not 

saturate u
i

. We have 

def(T) def(T.) - k + 1 
1 

k 
~ (k - 3) r s1 + 2k + 2 

if:.1 

k si - 1 

i~l L-k-J - k + 1 

k s. - 1 
(k - 3)m + k + 1 + 2 L L_1-J 

i=l k 

~ (k - 3)m + k + 1 + 2 
k s - 1 

Lr_i_J 
if:.1 k 

m - k 
(k - 3)m + k + 1 + 2 L---k---J 
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(k - 3)(m + 1) + 2 + 2 Lm/k J . 

Thus (1) holds for s m + 1. This completes the proof of (1). 

o 

We now demonstrate that the bound given in Lemma is sharp. 

This is obviously the case for k 2, so we suppose that k ~ 3. Let 

A(k,t) denote the graph formed from the path P :::; v
1
,v

2
, ... ,v

t 
by 

joining each v. to k - 2 new vertices v. ,v. , ... , v. k (see Figure 
1 11 12 1, -2 

3). Observe that v(A(k,t)) :::; t(k - 1) and def(A(k,t)) = t(k 3). 

Figure 3 A(k, t) 

V 
t2 Vt ,k-2 

Consider the graph A(k,2). We form the graph B(k) by adding (k - 2) 

disjoint copies of K 1 and joining v ., ::;; ::;; k-2, to all the --k- 21 

vertices of the ith copy of ~-1 (see Figure 4). Observe that B(k) is 

a tree with k(k - 1) vertices and deficiency (k - 1)(k - 2). We will 

now construct, using A(k,t) and B(k) as building blocks, a graph T E 

T(n;l,k) with def(T) equal to the right hand side of (1). 

Let s - 1 :::; kp + r, 0 ::;; r ::;; k - 1 and p ~ O. If p :::; 0, we can 

take our T as the graph formed from A(k,r+l) by joining v
1 

and vr+l to 

two new vertices u
l 

and u
2

' respectively. When p > 0 we form our T as 

follows. 
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9@ 
II II 

Figure 4 B(k) 

@ 
II 

Take p copies of B (k),B (k)"" ,B (k) and A(k,r+1), Identify the 
1 2 P (') (1) 

"VI' v
2 

vertices" of B. (k), 1 :s i :s p, by v 1 and v 
1 1 2 

respectively, We join the vertex v 0) to v (1+1) for each 1 :s i :s 
2 1 

p-1, join v (1) to a new vertex u, join v (p) to the vertex v of 
1 1 2 1 

A(k, r+1) and join the vertex vr+1 of A(k, r+1) to a new vertex u
2

' 

Call the resulting graph T. Observe that every vertex of T has degree 

1 or k and 

v(T) pk(k - 1) + (r + 1)(k - 1) + 2 

s(k - 1) + 2 . 

Thus T E y(n;1,k} with n = s(k - 1) + 2, Now every maximum matching 
(1) 

of T saturates the vertices v
1 

,1:S i :s p, v
1
,v

2
'" ,v

r
+

1
' Also, 

every maximum matching of 

Consequently 

B. (k) 
1 

saturates V 
1 

def(t) I def(B.(k)) + def(A(k,r+1)) + 2 
i=1 1 

(1) 

p(k - 1)(k - 2) + (r + 1)(k - 3) + 2 
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(k - 3) s + 2 + 2 L (s - 1) /k J . 

This establishes that the upper bound given by Lemma 1 is sharp. We 

now turn our attention to the lower bound. 

Lemma 2. 

Then 

Let T E L( n; 1, k) be a graph with s vert ices of degree k. 

Ca) def(T) o if s o 

(b) defCT) ~ (k - 3)s + 2 if s ~ 

and this bound is sharp for k ~ 3. 

Proof: The lemma will be proved by using induction on s. The result 

is true for s = 0 and s = 1. Assume it is true for all s, 1 ~ s ~ m, 

and let T be tree with s = m + 1. Let u be a vertex of degree k in 

T. As in the proof of Lemma 1 we form T' from T by deleting u and 

adding k new vert ices u
l

' u
2

, ... uk and k new edges u i vi' 1 ~ i ~ k, 

(see Figure 2). Then TI is a forest consisting of k components 

T
1
,T

2
"k"Tk with u i E Ti . Let n i = IVeTi)l. Clearly Ti E L(n i ;l,k) 

and Ln. = n + k - 1. 
i=l 1 

Suppose Ti has si vertices of degree k. Then s. ~ m and 
1 

m. By our induction hypothesis we have 

when s. > O. 
1 

k 
\' s. ih 1 

If si = 0, then Ti is necessarily an edge and hence defCT i ) =0. On 

the other hand, if si > a then viis saturated by every maximum 

matching of T i; u
i 

mayor may not be saturated. Suppose TI has p 
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components with no vertices of degree k. Without loss of generality 

we may take these components as T
t
,T

2
, •.. ,Tp' We have 

def(T) ~ def(T') - (k - p) + p - 1 

k L def(T.) - (k - p) + p - 1 
i=p+1 1 

k 
~ L [(k - 3)Si + 2] - k + 2p - 1 

i=p+1 

(k - 3)m + 2(k - p) k + 2p - 1 

(k - 3)(m + 1) + 2 . 

This completes the proof of the inequality in (b). 

That the bound is sharp follows from the graph T obtained from 

A{k, s) by adding two new vertices u
t 

and u
2 

and the edges 

v u . 
S 2 

Let 

D(n; 1,k) {def(T): T e T(n;1,k)} . 

uv 
1 1 

and 

o 

When k = 2, T{n;1,k) consists of just a path of length n - 1 and hence 

D(n; 1,k) = {a} if n is even and D(n; 1,k) = {t}, if n is odd. For k ~ 

3 we have the following result. 

Theorem 1. For integers k ~ 3 and n ~ 4, 

(a) D(n;1,k) = ~, if n - 2(mod(k - 1», and 
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(b) D(n;l,k) {d ' (k-3)n+4 < d < 
. k-l - -

d - n (mod 2)}, if n == 2 ( mod (k - 1)). 

Proof: Let T E 'dn; 1, k) be a graph with s vertices of degree k. 

Equation (2) implies that n == 2(mod(k 1)), proving (a). Now suppose 

that n s(k - 1) + 2 and let s - 1 = kp + r, where 0 ~ r ~ k - 1 and 

p ~ O. Then n = (k - l)(kp + r + 1) + 2. Hence 

(k - 3)(kp + r + 1) + 2, 

and 

LkP ~ r J p. 

Thus we must prove that 

D(n; l,k) {d: (k-3)(kp+r+l) + 2 ~ d ~ (k-3)(kp+r+l) + 2 

+ 2p , d - n (mod 2)}. (3) 

We do this by construction. 

Let 

d Ck-3)(kp+r+l) + 2 + 2q, o ~ q ~ p. 

We have already given constructions for the lower bound q = 0 and the 

upper bound q = p. So suppose 1 ~ q ~ p - 1. Using the building 

blocks B(k) and A(k, t) defined earlier we shall form a graph T E 
q 

T(n; l,k) having deficiency d. 
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Take q copies B
1

Ck). B
2

(k), ... ,B
q

(k) of B(k) and the graph 

A(k,kCp - q) + r + 1). As earlier we identify the vertices v
1 

and v
2 

of Bl,(k), 1;s i;s q. by v (U and v (U, respectively, We join: v 0) 
122 

to v
1
(i+1) for each 1 ;s i ;s q - 1; v

I
(l) to a new vertex u

l
; v

2
(q) to 

the vertex v
1 

of A(k,k(p - q) + r + 1); and the vertex vk ( ) 1 of p-q +v+ 

A(k, k(p - q) + r + 1) to a new vertex u
2

' Call the resulting graph 

T. Then T E T(n;l,k) as every vertex of T has degree 1 or k and q q q 

veT ) 
q 

q k(k - 1) + (k(p - q) + r + l)(k - 1) + 2 

(k - l)(pk + r + 1) + 2 

n . 

Further, using the arguments following Lemma 1, we have 

def(T ) 
q i~l def(BiCk» + def(A(k,k(p - q) + r + 1» + 2 

q(k - l)(k - 2) + (k(p - q) + r + l)(k - 3) + 2 

(k - 3)(kp + r + 1) + 2 + 2q . 

Hence T has deficiency d as required. The theorem now follows from 
q 

Lemmas 1 and 2. 0 

Let 

V(njl,k) {vcc(T):T E T(n;l,k)} . 
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Since T(n; 1,2) consists of just a path of length n - 1, we have 

V(n;l,2) = {r~l}. For k ~ 3, Theorem 1 and the fact that vcc(T) = &(n 

+ def(T» yields: 

Theorem 2. For integers k ~ 3 and n ~ 4, 

(a) V(n;l,k) if> , if n ;c 2 (mod (k - 1», 

(b) yen; 1, k) {x 
(k-2)n+2 

k-1 ~ x ~ + 
n-k-1 
Lk (k-l )J 

X EN}, if n = 2 (mod(k - 1». 

o 

The edge covering number peG) of G is the smallest number of 

edges needed to cover the vertex set of G. Let o(G) denote the 

minimum degree of vertices of G. In 1959, Gallai proved (see pl02 of 

[1]) the following result. 

Theorem (Gallai) Let M be any maximum matching in G, where o(G) > O. 

Then 

peG) + IMI v(G) . 

o 

We have the following corollary. 

Corollary. If G is triangle free and o(G) > 0, then 

p ( G) = vce ( G ) . 

o 
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